Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 243: 125319, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31722260

RESUMO

Due to the promotion on Cl radical generation by enhanced oxidation, chlorination of hydrocarbon intermediates becomes a potential formation path for chloroaromatic precursors of PCDD/Fs (polychlorinated dibenzo-p-dioxins and dibenzofurans) in both MSW (municipal solid waste) incineration and gasification-combustion processes, in which intrinsic oxygen might have a significant effect on the competition between oxidation and chlorination. Thus, chlorination of benzene and phenol was experimentally studied on a homogeneous flow reaction system. Effects of temperature and ER (equivalence ratio) were assessed, and comparison was carried out to clarify the alteration in formation behaviors of chloroaromatics by extrinsic and intrinsic oxygen. At 600 °C, chlorobenzenes were already largely formed in benzene chlorination, and the addition of extrinsic oxygen barely affected it. On the contrary, with intrinsic oxygen, phenol tended to decompose to light compounds. With rising temperature, oxidation was promoted and extrinsic oxygen strongly inhibited the formation of chloroaromatics in benzene chlorination at 900 °C and higher temperature. For phenol chlorination, chlorobenzenes were still rarely generated. However, high proportions of octachloronaphthalene and octachlorodibenzofuran were observed, due to the enhancement in polymerization by high temperature. When increasing ER, oxidative decomposition was also promoted in both the chlorination of benzene and phenol. Extra extrinsic oxygen led to a further reduction of chloroaromatics during benzene chlorination, and till ER = 1.0 at 1000 °C, comparable performance to intrinsic oxygen could be achieved in the control of chloroaromatics. Based on these results, formation pathways of the major chloroaromatics from chlorination, oxidation and polymerization were summarized, and the roles of extrinsic and intrinsic oxygen in altering their formation behaviors were revealed.


Assuntos
Dibenzofuranos Policlorados/análise , Oxigênio/química , Dibenzodioxinas Policloradas/análise , Benzeno , Benzofuranos , Clorobenzenos , Dibenzofuranos Policlorados/química , Halogenação , Temperatura Alta , Incineração , Modelos Químicos , Oxirredução , Fenóis , Dibenzodioxinas Policloradas/química , Resíduos Sólidos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...