Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 913856, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212318

RESUMO

Sulfur-containing compounds are essential for plant development and environmental adaptation, and closely related to the flavor and nutrition of the agricultural products. Cysteine, the first organic sulfur-containing molecule generated in plants, is the precursor for most of these active substances. Serine acetyltransferase (SERAT) catalyzes the rate-limiting step of its formation. However, despite their importance, systematic analyses of these enzymes in individual species, especially in economically important crops, are still limited. Here, The SERAT members (SlSERATs, four in total) were identified and characterized in tomato. Phylogenetically, the four SlSERAT proteins were classified into three subgroups with distinct genomic structures and subcellular localizations. On the function, it was interesting to find that SlSERAT3;1, possessed a high ability to catalyze the formation of OAS, even though it contained a long C-terminus. However, it retained the essential C-terminal Ile, which seems to be a characteristic feature of SERAT3 subfamily members in Solanaceae. Besides, SlSERAT1;1 and SlSERAT2;2 also had high activity levels and their catalyzing abilities were significantly improved by the addition of an OAS-(thiol)-lyase protein. At the transcriptional level, the four SlSERAT genes had distinct expression patterns during tomato plant development. Under abiotic stress conditions, the chloroplast-localized SlSERATs were the main responders, and the SlSERATs adopted different strategies to cope with osmotic, ion toxicity and other stresses. Finally, analyses in the loss-of-function and overexpression lines of SlSERAT1;1 suggested that function redundancy existed in the tomato SERAT members, and the tomato SERAT member was ideal target for S-assimilation manipulating in molecular breeding.

2.
Plant Sci ; 318: 111219, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35351302

RESUMO

Abscission is an important developmental process and an essential agricultural trait. Auxin and ethylene are two phytohormones with important roles in the complex, but still elusive signaling network of abscission. Here, we found that hydrogen sulfide (H2S), a newly identified gasotransmitter, inhibits the initiation of tomato pedicel abscission. The underlying mechanism was explored through transcriptome profile analysis in various pedicel tissues with or without H2S treatment in the early abscission stage. The data suggested that H2S strongly influences the global transcription of pedicel tissues, exerts differential expression regulation along the pedicel, and markedly influences both the auxin and ethylene signaling pathways. Computational analysis revealed that H2S reconstructs a basipetal auxin gradient along the pedicel at 4 h after treatment; this finding was further substantiated by the GUS-staining results of DR5::GUS pedicels. The inhibitory effect of H2S to the ethylene signaling pathway might be an indirect action. Moreover, the subtilisin-like proteinase family members involved in the release of peptide signal molecules are critical components of the abscission signaling network downstream of auxin and ethylene.


Assuntos
Sulfeto de Hidrogênio , Solanum lycopersicum , Perfilação da Expressão Gênica , Sulfeto de Hidrogênio/metabolismo , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/metabolismo , Reguladores de Crescimento de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...