Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Mol Pain ; 19: 17448069231197158, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37606554

RESUMO

Music seems promising as an adjuvant pain treatment in humans, while its mechanism remains to be illustrated. In rodent models of chronic pain, few studies reported the analgesic effect of music. Recently, Zhou et al. stated that the analgesic effects of sound depended on a low (5 dB) signal-to-noise ratio (SNR) relative to ambient noise in mice. However, despite employing multiple behavioral analysis approaches, we were unable to extend these findings to a mice model of chronic pain listening to the 5 dB SNR.


Assuntos
Analgesia , Dor Crônica , Adulto , Humanos , Animais , Camundongos , Ruído , Manejo da Dor , Analgésicos
3.
Acta Physiol (Oxf) ; 238(2): e13974, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37186158

RESUMO

AIM: Multiple sclerosis (MS) is an autoimmune disease, and its typical characteristics are neuroinflammation and the demyelination of neurons in the central nervous system (CNS). Sterile alpha and TIR motif containing 1 (SARM1) is an essential factor mediating axonal degeneration and SARM1 deletion reduces the neuroinflammation in spinal cord injury. This study aimed to explore the roles of SARM1 and its underlying mechanisms in MS. METHODS: Experimental autoimmune encephalomyelitis (EAE, a model of MS) model was established. Immunostaining, western blot, electron microscope, and HE staining were used to examine the pathological manifestations such as inflammation, demyelination, and neuronal death in SARM1f/f EAE mice and SARM1Nestin -CKO EAE mice. In addition, RNA-seq, real-time PCR and double-immunostaining were used to examine the underlying mechanism of SARM1 in EAE mice. RESULTS: SARM1 was upregulated in neurons of the spinal cords of EAE mice. SARM1 knockout in CNS ameliorated EAE with less neuroinflammation, demyelination, and dead neurons. Mechanically, SARM1 knockout resulted in the reduction of insulin-like growth factor (IGF)-binding protein 2 (IGFBP2) in neurons of EAE mice, which might inhibit the neuroinflammation through inhibiting NF-κB signaling. Finally, activation of NF-κB partially aggravated the neuroinflammation and demyelination deficits of SARM1Nestin -CKO EAE mice. CONCLUSIONS: These results identified the unknown role of SARM1 in the promotion of neuroinflammation and demyelination and revealed a novel drug target pathway of SARM1/IGFBP2/NF-κB for MS.


Assuntos
Encefalomielite Autoimune Experimental , Camundongos , Animais , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , NF-kappa B/metabolismo , Nestina , Doenças Neuroinflamatórias , Citocinas/metabolismo , Camundongos Endogâmicos C57BL , Proteínas do Citoesqueleto/genética , Proteínas do Domínio Armadillo/genética
4.
Glia ; 71(5): 1197-1216, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36617748

RESUMO

The homeostasis of glutamate is mainly regulated by the excitatory amino acid transporters (EAATs), especially by EAAT2 in astrocytes. Excessive glutamate in the synaptic cleft caused by dysfunction or dysregulation of EAAT2 can lead to excitotoxicity, neuronal death and cognitive dysfunction. However, it remains unclear about the detailed regulation mechanism of expression and function of astrocytic EAAT2. In this study, first, we found increased neuronal death and impairment of cognitive function in YAPGFAP -CKO mice (conditionally knock out Yes-associated protein [YAP] in astrocytes), and identified EAAT2 as a downstream target of YAP through RNA sequencing. Second, the expression of EAAT2 was decreased in cultured YAP-/- astrocytes and the hippocampus of YAPGFAP -CKO mice, and glutamate uptake was reduced in YAP-/- astrocytes, but increased in YAP-upregulated astrocytes. Third, further investigation of the mechanism showed that the mRNA and protein levels of ß-catenin were decreased in YAP-/- astrocytes and increased in YAP-upregulated astrocytes. Wnt3a activated YAP signaling and up-regulated EAAT2 through ß-catenin. Furthermore, over-expression or activation of ß-catenin partially restored the downregulation of EAAT2, the impairment of glutamate uptake, neuronal death and cognitive decline that caused by YAP deletion. Finally, activation of EAAT2 also rescued neuronal death and cognitive decline in YAPGFAP -CKO mice. Taken together, our study identifies an unrecognized role of YAP signaling in the regulation of glutamate homeostasis through the ß-catenin/EAAT2 pathway in astrocytes, which may provide novel insights into the pathogenesis of brain diseases that closely related to the dysfunction or dysregulation of EAAT2, and promote the development of clinical strategy.


Assuntos
Astrócitos , Proteínas de Sinalização YAP , Animais , Camundongos , Astrócitos/metabolismo , beta Catenina/metabolismo , Ácido Glutâmico/metabolismo , Homeostase , Sistemas de Transporte de Aminoácidos/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 1 de Aminoácido Excitatório/genética , Transportador 1 de Aminoácido Excitatório/metabolismo
5.
Cell Death Dis ; 13(9): 759, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36055989

RESUMO

Astrocytes are important components of the innate immune response in the central nervous system (CNS), involving in the inflammatory and neurotoxic responses that occur in CNS diseases, such as multiple sclerosis (MS). Recent studies have shown that SARM1 plays a critical role in axonal degeneration and inflammation. However, the detailed role of astrocytic SARM1 in MS remains unclear. Here, we established the MS model of mice - experimental autoimmune encephalomyelitis (EAE) and found that SARM1 was upregulated in astrocytes of the spinal cords of EAE mice. Moreover, conditional knockout of astrocytic SARM1 (SARM1GFAP-CKO mice, SARM1Aldh1L1-CKO mice) delayed EAE with later onset, alleviated the inflammatory infiltration, and inhibited the demyelination and neuronal death. Mechanically, RNA-seq revealed that the expression of glial-derived neurotrophic factor (GDNF) was upregulated in SARM1-/- astrocytes. Western blot and immunostaining further confirmed the upregulation of GDNF in spinal cord astrocytes of SARM1GFAP-CKO EAE mice. Interestingly, the downregulation of GDNF by streptozotocin (STZ, a drug used to downregulate GDNF) treatment worsened the deficits of SARM1GFAP-CKO EAE mice. These findings identify that astrocytic SARM1 promotes neuroinflammation and axonal demyelination in EAE by inhibiting the expression of GDNF, reveal the novel role of SARM1/GDNF signaling in EAE, and provide new therapeutic ideas for the treatment of MS.


Assuntos
Proteínas do Domínio Armadillo/metabolismo , Proteínas do Citoesqueleto/metabolismo , Encefalomielite Autoimune Experimental , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Esclerose Múltipla , Animais , Astrócitos/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Doenças Neuroinflamatórias , Medula Espinal/metabolismo
6.
Cell Death Dis ; 12(10): 907, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34611127

RESUMO

Cholesterols are the main components of myelin, and are mainly synthesized in astrocytes and transported to oligodendrocytes and neurons in the adult brain. It has been reported that Hippo/yes-associated protein (YAP) pathways are involved in cholesterol synthesis in the liver, however, it remains unknown whether YAP signaling can prevent the demyelination through promoting cholesterol synthesis in experimental autoimmune encephalomyelitis (EAE), a commonly used animal model of multiple sclerosis characterized by neuroinflammation and demyelination. Here, we found that YAP was upregulated and activated in astrocytes of spinal cords of EAE mice through suppression of the Hippo pathway. YAP deletion in astrocytes aggravated EAE with earlier onset, severer inflammatory infiltration, demyelination, and more loss of neurons. Furthermore, we found that the neuroinflammation was aggravated and the proliferation of astrocytes was decreased in YAPGFAP-CKO EAE mice. Mechanically, RNA-seq revealed that the expression of cholesterol-synthesis pathway genes such as HMGCS1 were decreased in YAP-/- astrocytes. qPCR, western blot, and immunostaining further confirmed the more significant reduction of HMGCS1 in spinal cord astrocytes of YAPGFAP-CKO EAE mice. Interestingly, upregulation of cholesterol-synthesis pathways by diarylpropionitrile (DPN) (an ERß-ligand, to upregulate the expression of HMGCS1) treatment partially rescued the demyelination deficits in YAPGFAP-CKO EAE mice. Finally, activation of YAP by XMU-MP-1 treatment promoted the expression of HMGCS1 in astrocytes and partially rescued the demyelination and inflammatory infiltration deficits in EAE mice. These findings identify unrecognized functions of astrocytic YAP in the prevention of demyelination through promoting cholesterol synthesis in EAE, and reveal a novel pathway of YAP/HMGCS1 for cholesterol synthesis in EAE pathology.


Assuntos
Astrócitos/metabolismo , Colesterol/biossíntese , Doenças Desmielinizantes/genética , Encefalomielite Autoimune Experimental/genética , Regulação da Expressão Gênica , Animais , Astrócitos/patologia , Peso Corporal , Proliferação de Células , Regulação para Baixo/genética , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/fisiopatologia , Via de Sinalização Hippo , Inflamação/patologia , Camundongos Knockout , Modelos Biológicos , Neurônios/metabolismo , Neurônios/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Recuperação de Função Fisiológica , Medula Espinal/patologia , Medula Espinal/ultraestrutura , Regulação para Cima/genética , Proteínas de Sinalização YAP/deficiência , Proteínas de Sinalização YAP/metabolismo
7.
Aging Cell ; 20(9): e13465, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34415667

RESUMO

Senescent astrocytes accumulate with aging and contribute to brain dysfunction and diseases such as Alzheimer's disease (AD), however, the mechanisms underlying the senescence of astrocytes during aging remain unclear. In the present study, we found that Yes-associated Protein (YAP) was downregulated and inactivated in hippocampal astrocytes of aging mice and AD model mice, as well as in D-galactose and paraquat-induced senescent astrocytes, in a Hippo pathway-dependent manner. Conditional knockout of YAP in astrocytes significantly promoted premature senescence of astrocytes, including reduction of cell proliferation, hypertrophic morphology, increase in senescence-associated ß-galactosidase activity, and upregulation of several senescence-associated genes such as p16, p53 and NF-κB, and downregulation of Lamin B1. Further exploration of the underlying mechanism revealed that the expression of cyclin-dependent kinase 6 (CDK6) was decreased in YAP knockout astrocytes in vivo and in vitro, and ectopic overexpression of CDK6 partially rescued YAP knockout-induced senescence of astrocytes. Finally, activation of YAP signaling by XMU-MP-1 (an inhibitor of Hippo kinase MST1/2) partially rescued the senescence of astrocytes and improved the cognitive function of AD model mice and aging mice. Taken together, our studies identified unrecognized functions of YAP-CDK6 pathway in preventing astrocytic senescence in vitro and in vivo, which may provide further insights and new targets for delaying brain aging and aging-related neurodegenerative diseases such as AD.


Assuntos
Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Senescência Celular , Quinase 6 Dependente de Ciclina/metabolismo , Proteínas de Sinalização YAP/metabolismo , Animais , Células Cultivadas , Cognição , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
8.
Theranostics ; 11(17): 8480-8499, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34373754

RESUMO

Rationale: Optic neuritis is one of main symptoms in multiple sclerosis (MS) that causes visual disability. Astrocytes are pivotal regulators of neuroinflammation in MS, and astrocytic yes-associated protein (YAP) plays a critical role in neuroinflammation. Meanwhile, YAP signaling is involved in visual impairment, including glaucoma, retinal choroidal atrophy and retinal detachment. However, the roles and underlying mechanisms of astrocytic YAP in neuroinflammation and demyelination of MS-related optic neuritis (MS-ON) remains unclear. Methods: To assess the functions of YAP in MS-ON, experimental autoimmune encephalomyelitis (EAE, a common model of MS) was established, and mice that conditional knockout (CKO) of YAP in astrocytes, YAPGFAP-CKO mice, were successfully generated. Behavior tests, immunostaining, Nissl staining, Hematoxylin-Eosin (HE) staining, TUNEL staining, Luxol Fast Blue (LFB) staining, electron microscopy (EM), quantitative real-time PCR (qPCR), gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) by RNA sequencing were used to examine the function and mechanism of YAP signaling based on these YAPGFAP-CKO mice and EAE model mice. To further explore the potential treatment of YAP signaling in EAE, EAE mice were treated with various drugs, including SRI-011381 that is an agonist of transforming growth factor-ß (TGF-ß) pathway, and XMU-MP-1 which inhibits Hippo kinase MST1/2 to activate YAP. Results: We found that YAP was significantly upregulated and activated in the astrocytes of optic nerve in EAE mice. Conditional knockout of YAP in astrocytes caused more severe inflammatory infiltration and demyelination in optic nerve, and damage of retinal ganglion cells (RGCs) in EAE mice. Moreover, YAP deletion in astrocytes promoted the activation of astrocytes and microglia, but inhibited the proliferation of astrocytes of optic nerve in EAE mice. Mechanically, TGF-ß signaling pathway was significantly down-regulated after YAP deletion in astrocytes. Additionally, both qPCR and immunofluorescence assays confirmed the reduction of TGF-ß signaling pathway in YAPGFAP-CKO EAE mice. Interestingly, SRI-011381 partially rescued the deficits in optic nerve and retina of YAPGFAP-CKO EAE mice. Finally, activation of YAP signaling by XMU-MP-1 relieved the neuroinflammation and demyelination in optic nerve of EAE mice. Conclusions: These results suggest astrocytic YAP may prevent the neuroinflammatory infiltration and demyelination through upregulation of TGF-ß signaling and provide targets for the development of therapeutic strategies tailored for MS-ON.


Assuntos
Astrócitos/metabolismo , Encefalomielite Autoimune Experimental/fisiopatologia , Proteínas de Sinalização YAP/metabolismo , Animais , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/metabolismo , Doenças Neuroinflamatórias , Nervo Óptico/fisiologia , Neurite Óptica/metabolismo , Neurite Óptica/fisiopatologia , Retina/metabolismo , Retina/fisiologia , Células Ganglionares da Retina/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/fisiologia , Proteínas de Sinalização YAP/fisiologia
9.
Aging (Albany NY) ; 12(18): 18501-18521, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-32991321

RESUMO

Treatment of glioblastoma using radiotherapy and chemotherapy has various outcomes, key among them being cellular senescence. However, the molecular mechanisms of this process remain unclear. In the present study, we tested the ability of D-galactose (D-gal), a reducing sugar, to induce senescence in glioblastoma cells. Following pretreatment with D-gal, glioblastoma cell lines (C6 and U87MG) showed typical characteristics of senescence. These included the reduced cell proliferation, hypertrophic morphology, increased senescence-associated ß-galactosidase activity, downregulation of Lamin B1, and upregulation of several senescence-associated genes such as p16, p53, and NF-κB. Furthermore, our results showed that D-gal was more suitable than etoposide (a DNA-damage drug) in inducing senescence of glioblastoma cells. Mechanistically, D-gal inactivated the YAP-CDK6 signaling pathway, while overexpression of YAP or CDK6 could restore D-gal-induced senescence of C6 cells. Finally, metformin, an anti-aging agent, activated the YAP-CDK6 pathway and suppressed D-gal-induced senescence of C6 cells. Taken together, these findings established a new model for analyzing senescence in glioblastoma cells, which occurred through the YAP-CDK6 pathway. This is expected to provide a basis for development of novel therapies for the treatment of glioblastoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...