Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Front Biosci (Landmark Ed) ; 29(6): 216, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38940040

RESUMO

The treatment options for multiple myeloma (MM) have undergone significant transformation with the advent of immunotherapy. Novel therapies that focus on tumor antigens now drive advances in MM research. Bispecific antibodies (bsAbs) leverage revolutionary advances in bioengineering techniques and embody the second generation of antibody-based tumor therapy. Recent studies on bsAbs in relapsed/refractory MM cases have revealed remarkable efficacy and acceptable safety profiles. The approval of elranatamab and teclistamab represents the next step in the development of bsAbs for the treatment of MM. This review article addresses the antigen targeting, efficacy, safety, and strategies in the application of bsAbs against treatment-resistant MM, with a focus on clinical trials and real-world data.


Assuntos
Anticorpos Biespecíficos , Mieloma Múltiplo , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/terapia , Anticorpos Biespecíficos/uso terapêutico , Anticorpos Biespecíficos/imunologia , Humanos , Imunoterapia/métodos , Antígenos de Neoplasias/imunologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/imunologia , Antineoplásicos Imunológicos/uso terapêutico , Antineoplásicos Imunológicos/imunologia
2.
Int J Biol Sci ; 20(6): 2027-2043, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617550

RESUMO

Metabolic-associated fatty liver disease (MAFLD) is a globally prevalent chronic hepatic disease. Previous studies have indicated that the activation of the signal transducer and activator of transcription3 (STAT3) plays a vital role in MAFLD progression at the very beginning. However, the specific association between STAT3 and abnormal hepatic metabolism remains unclear. In this study, activated inflammation was observed to induce abnormal glucolipid metabolic disorders in the hepatic tissues of high-fat diet (HFD)-fed ApoE-/- mice. Furthermore, we found that the activation of STAT3 induced by HFD might function as a transcriptional factor to suppress the expression of VAV3, which might participate in intracellular glucolipid metabolism and the regulation of glucose transporter 4 (GLUT4) storage vesicle traffic in the development of MAFLD both in vitro and in vivo. We verified that VAV3 deficiency could retard the GLUT4 membrane translocation and impair the glucose homeostasis. Additionally, VAV3 participates in cholesterol metabolism in hepatocytes, eventually resulting in the accumulation of intracellular cholesterol. Moreover, rAAV8-TBG-VAV3 was conducted to restore the expression of VAV3 in HFD-fed ApoE-/- mice. VAV3 overexpression was observed to improve glucose homeostasis as well as attenuate hepatic cholesterol accumulation in vivo. In conclusion, the STAT3/VAV3 signaling pathway might play a significant role in MAFLD by regulating glucose and cholesterol metabolism, and VAV3 might be a potential therapeutic strategy which could consequently ameliorate MAFLD.


Assuntos
Doenças Metabólicas , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Apolipoproteínas E/genética , Colesterol , Glucose
3.
Front Immunol ; 15: 1346211, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464531

RESUMO

Multiple myeloma is the second most common malignant hematologic malignancy which evolved different strategies for immune escape from the host immune surveillance and drug resistance, including uncontrolled proliferation of malignant plasma cells in the bone marrow, genetic mutations, or deletion of tumor antigens to escape from special targets and so. Therefore, it is a big challenge to efficiently treat multiple myeloma patients. Despite recent applications of immunomodulatory drugs (IMiDS), protease inhibitors (PI), targeted monoclonal antibodies (mAb), and even hematopoietic stem cell transplantation (HSCT), it remains hardly curable. Summarizing the possible evasion strategies can help design specific drugs for multiple myeloma treatment. This review aims to provide an integrative overview of the intrinsic and extrinsic evasion mechanisms as well as recently discovered microbiota utilized by multiple myeloma for immune evasion and drug resistance, hopefully providing a theoretical basis for the rational design of specific immunotherapies or drug combinations to prevent the uncontrolled proliferation of MM, overcome drug resistance and improve patient survival.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Medula Óssea/patologia , Anticorpos Monoclonais/uso terapêutico , Plasmócitos/patologia , Imunoterapia
5.
Proc Natl Acad Sci U S A ; 120(50): e2310584120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38048464

RESUMO

We present a comprehensive description of the aspect ratio impact on interfacial instability in porous media where a wetting liquid displaces a nonwetting fluid. Building on microfluidic experiments, we evidence imbibition scenarios yielding interfacial instabilities and macroscopic morphologies under different depth confinements, which were controlled by aspect ratio and capillary number. We report a phenomenon whereby a smaller aspect ratio of depth-variable microfluidic porous media and lower capillary number trigger interfacial instability during forced imbibition; otherwise, a larger aspect ratio of uniform-depth microfluidic porous media and higher capillary number will suppress the interfacial instability, which seemingly ignored or contradicts conventional expectations with compact and faceted growth during imbibition. Pore-scale theoretical analytical models, numerical simulations, as well as microfluidic experiments were combined for characteristics of microscopic interfacial dynamics and macroscopic displacement results as a function of aspect ratio, depth variation, and capillary number. Our results present a complete dynamic view of the imbibition process over a full range of regimes from interfacial stabilization to destabilization. We predict the mode of imbibition in porous media based on pore-scale interfacial behavior, which fits well with microfluidic experiments. The study provides insights into the role of aspect ratio in controlling interfacial instabilities in microfluidic porous media. The finding provides design or prediction principles for engineered porous media, such as microfluidic devices, membranes, fabric, exchange columns, and even soil and rocks concerning their desired immiscible imbibition behavior.

6.
Langmuir ; 39(48): 17021-17030, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37993781

RESUMO

Dispersed multiphase systems are ubiquitous in biological systems, energy industries, and medical science. The distribution transition of the dispersed phase is critical to the properties and functions of the multiphase systems, among which the agglomeration, adsorption, and extraction processes are of most significance due to their impact on the colloidal stability, interface modification, and particle synthesis. To reveal fundamental correlations between the macroscopic particle distributions and the microscopic interactions, general thermodynamic models of the dispersed multiphase systems are needed. Here, based on Meyer's model, which is restricted to binary isotropic mixtures, we propose a novel extended lattice model that can be applied to multicomponent anisotropic mixtures with interfaces considered. For agglomeration, adsorption, and extraction processes, the approximate free energy differences between the initial distribution and the final distribution are obtained. Based on the minimum free energy principle, the above free energy differences are used to derive three criteria for the prediction of the preferable distribution of the system with given interparticle interaction potentials. While the quasi-uniform number density assumption is still required for all the previous lattice models, the long-range interactions neglected by previous lattice models are incorporated. The validity of our model and criteria is verified by many-body dissipative particle dynamics (mDPD) simulations. By tuning the interaction coefficients between mDPD particles, the simulated distribution transitions for all the agglomeration, adsorption, and extraction cases perfectly match the predictions from the three criteria. The good agreement between the theoretical predictions and the mDPD simulation results shows the great potential of our model for applications in various dispersed multiphase systems.

7.
ACS Appl Mater Interfaces ; 15(42): 49554-49566, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37843042

RESUMO

We designed and synthesized high-performance nanogel-in-oils with intermediate properties between solid particles and liquid droplets for multiphase flow control in porous media. The ultrasmall polymeric nanogels prepared via inverse emulsion polymerization were efficiently encapsulated in micrometer-sized oil droplets with the aid of surfactants during transfer from the oil phase to the aqueous phase. The composite colloidal system exhibited high loading capacity, unimodal size distribution, and long-term kinetic stability in suspension. The colloidal behaviors of nanogel-in-oils and the corresponding interfacial evolution during displacement in porous media were investigated via microfluidic experiments. In situ emulsification was observed with a state contrary to that of static characterizations. The spontaneous and sustainable formation of foam-like water-in-oil macroemulsions originated from aqueous phase breakup and oil film development, both enhanced by nanogel-in-oils. Sweeping efficiency enhancement by invasion events and residual oil transport in macroemulsion phases yielded exceptional displacement performances. Flow field fluctuations and emulsion state variations can be manipulated by adjusting nanogel-in-oil concentrations. The nanogel-in-oil suspension was found to exhibit optimal performance among the tested dispersed systems.

8.
Free Radic Biol Med ; 205: 163-174, 2023 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307935

RESUMO

Prolonged activation of the PERK branch of the unfolded protein response (UPR) promotes cardiomyocytes apoptosis in response to chronic ß-adrenergic stimulation. STAT3 plays a critical role in ß-adrenergic functions in the heart. However, whether STAT3 contributed to ß-adrenoceptor-mediated PERK activation and how ß-adrenergic signaling activates STAT3 remains unclear. This study aimed to investigate whether STAT3-Y705 phosphorylation contributed to the PERK arm activation in cardiomyocytes and if IL-6/gp130 signaling was involved in the chronic ß-AR-stimulation-induced STAT3 and PERK arm activation. We found that the PERK phosphorylation was positively associated with STAT3 activation. Wild-type STAT3 plasmids transfection activated the PERK/eIF2α/ATF4/CHOP pathway in cardiomyocytes while dominant negative Y705F STAT3 plasmids caused no obvious effect on PERK signaling. Stimulation with isoproterenol produced a significant increase in the level of IL-6 in the cardiomyocyte's supernatants, while IL-6 silence inhibited PERK phosphorylation but failed to attenuate STAT3 activation in response to isoproterenol stimulation. Gp130 silence attenuated isoproterenol-induced STAT3 activation and PERK phosphorylation. Inhibiting IL-6/gp130 pathway by bazedoxifene and inhibiting STAT3 by stattic both reversed isoproterenol-induced STAT3-Y705 phosphorylation, ROS production, PERK activation, IRE1α activation, and cardiomyocytes apoptosis in vitro. Bazedoxifene (5 mg/kg/day by oral gavage once a day) exhibited similar effect as carvedilol (10 mg/kg/day by oral gavage once a day) on attenuating chronic isoproterenol (30 mg/kg by abdominal injection once a day, 7 days) induced cardiac systolic dysfunction, cardiac hypertrophy and fibrosis in C57BL/6 mice. Meanwhile, bazedoxifene attenuates isoproterenol-induced STAT3-Y705 phosphorylation, PERK/eIF2α/ATF4/CHOP activation, IRE1α activation, and cardiomyocytes apoptosis to a similar extend as carvedilol in the cardiac tissue of mice. Our results showed that chronic ß-adrenoceptor-mediated stimulation activated the STAT3 and PERK arm of the UPR at least partially via IL-6/gp130 pathway. Bazedoxifene has great potential to be used as an alternative to conventional ß-blockers to attenuate ß-adrenoceptor-mediated maladaptive UPR.


Assuntos
Interleucina-6 , Proteínas Serina-Treonina Quinases , Camundongos , Animais , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Isoproterenol/farmacologia , Interleucina-6/genética , Interleucina-6/metabolismo , Endorribonucleases/metabolismo , Receptor gp130 de Citocina/genética , Receptor gp130 de Citocina/metabolismo , Adrenérgicos , Carvedilol , Camundongos Endogâmicos C57BL , Resposta a Proteínas não Dobradas , Receptores Adrenérgicos/metabolismo
9.
Adv Sci (Weinh) ; 10(20): e2206713, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37211685

RESUMO

Candida albicans (C. albicans) is an opportunistic pathogen increasingly causing candidiasis worldwide. This study aims to investigate the pattern of systemic immune responses triggered by C. albicans with disease associated variation of Sap2, identifying the novel evasion strategies utilized by clinical isolates. Specifically, a variation in clinical isolates is identified at nucleotide position 817 (G to T). This homozygous variation causes the 273rd amino acid exchange from valine to leucine, close to the proteolytic activation center of Sap2. The mutant (Sap2-273L) generated from SC5314 (Sap2-273V) background carrying the V273L variation within Sap2 displays higher pathogenicity. In comparison to mice infected with Sap2-273V strain, mice infected with Sap2-273L exhibit less complement activation indicated by less serum C3a generation and weaker C3b deposition in the kidney. This inhibitory effect is mainly achieved by Sap2273L -mediated stronger degradation of C3 and C3b. Furthermore, mice infected with Sap2-273L strain exhibit more macrophage phenotype switching from M0 to M2-like and more TGF-ß release which further influences T cell responses, generating an immunosuppressed cellular microenvironment characterized by more Tregs and exhausted T cell formation. In summary, the disease-associated sequence variation of Sap2 enhances pathogenicity by complement evasion and M2-like phenotype switching, promoting a more efficient immunosuppressed microenvironment.


Assuntos
Candida albicans , Proteínas Fúngicas , Animais , Camundongos , Candida albicans/genética , Proteínas Fúngicas/genética , Macrófagos , Fenótipo , Virulência/genética
10.
Psych J ; 12(3): 467-469, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37122116

RESUMO

This study explored the effect of daily loneliness on social media use and the mediating role of fear of missing out (FoMO). A total of 106 college students participated in a 2-week experience sampling study, yielding 1194 data points. The results showed that daily loneliness predicted social media use via FoMO.


Assuntos
Mídias Sociais , Humanos , Solidão , Inquéritos e Questionários , Medo , Estudantes
11.
J Gastrointest Surg ; 27(9): 1837-1845, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37101089

RESUMO

OBJECTIVES: Patients with obstruction jaundice are at a high risk of hypotension and need high volume of fluids and a high dose of catecholamine to maintain organ perfusion during operation procedure. All these likely contribute to high perioperative morbidity and mortality. The aim of the study is to evaluate the effects of methylene blue on the hemodynamics in patients undergoing surgeries associated with obstructive jaundice. DESIGN: A prospective, randomized, and controlled clinical study. SETTING: The enrolled patients randomly received 2 mg/kg of methylene blue in saline or saline (50 ml) before anesthesia induction. The primary outcome was the frequency and dose of noradrenaline administration to maintain mean arterial blood pressure over 65 mmHg or > 80% of baseline, and systemic vascular resistance (SVR) over 800 dyne/s/cm5 during operation. The secondary outcomes were liver and kidney functions, and ICU stay. PATIENTS: Seventy patients were enrolled in the study and randomly assigned to receive either methylene blue or control (n = 35/group). RESULTS: Fewer patients received noradrenaline in the methylene blue group when compared with the control group (13/35 vs 23/35, P = 0.017), and the noradrenaline dose administrated during operation was reduced in the methylene blue group when compared with the control group (0.32 ± 0.57 mg vs 1.787 ± 3.51 mg, P = 0.018). The blood level of creatinine, glutamic oxalacetic transaminase, and glutamic-pyruvic transaminase after the operation was reduced in the methylene blue group when compared with the control group. CONCLUSIONS: Prophylactic administration of methylene blue before operation associated with obstructive jaundice improves hemodynamic stability and short-term prognosis. QUESTION: Methylene blue use prevented refractory hypotension during cardiac surgery, sepsis, or anaphylactic shock. It is still unknown that methylene blue on the vascular hypo-tone associated with obstructive jaundice. FINDINGS: Prophylactic administration with methylene blue improved peri-operative hemodynamic stability, and hepatic and kidney function on the patients with obstructive jaundice. MEANINGS: Methylene blue is a promising and recommended drug for the patients undergoing the surgeries of relief obstructive jaundice during peri-operation management.


Assuntos
Hipotensão , Icterícia Obstrutiva , Humanos , Azul de Metileno/uso terapêutico , Azul de Metileno/farmacologia , Icterícia Obstrutiva/etiologia , Icterícia Obstrutiva/cirurgia , Estudos Prospectivos , Hemodinâmica , Norepinefrina/uso terapêutico , Norepinefrina/farmacologia , Hipotensão/etiologia
12.
Pharmaceuticals (Basel) ; 16(3)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36986461

RESUMO

Notopterol is a naturally occurring furanocoumarin compound found in the root of Notopterygium incisum. Hyperuricemia involves the activation of chronic inflammation and leads to cardiac damage. Whether notopterol has cardioprotective potential in hyperuricemia mice remains elusive. The hyperuricemic mouse model was constructed by administration of potassium oxonate and adenine every other day for six weeks. Notopterol (20 mg/kg) and allopurinol (10 mg/kg) were given daily as treatment, respectively. The results showed that hyperuricemia dampened heart function and reduced exercise capacity. Notopterol treatment improved exercise capacity and alleviated cardiac dysfunction in hyperuricemic mice. P2X7R and pyroptosis signals were activated both in hyperuricemic mice and in uric acid-stimulated H9c2 cells. Additionally, it was verified that inhibition of P2X7R alleviated pyroptosis and inflammatory signals in uric acid-treated H9c2 cells. Notopterol administration significantly suppressed expression levels of pyroptosis associated proteins and P2X7R in vivo and in vitro. P2X7R overexpression abolished the inhibition effect of notopterol on pyroptosis. Collectively, our findings suggested that P2X7R played a critical role in uric acid-induced NLRP3 inflammatory signals. Notopterol inhibited pyroptosis via inhibiting the P2X7R/NLRP3 signaling pathway under uric acid stimulation. Notopterol might represent a potential therapeutic strategy against pyroptosis and improve cardiac function in hyperuricemic mice.

13.
Pacing Clin Electrophysiol ; 46(6): 487-497, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36633015

RESUMO

BACKGROUND: Although Lesion size index (LSI) has been reported to highly predict radiofrequency lesion size in vitro, its accuracy in lesion size and steam pop estimation has not been well investigated for every possible scenario. METHODS: Initially, radiofrequency ablations were performed on porcine myocardial slabs at various power, CF, and time settings with blinded LSI. Subsequently, radiofrequency power at 20, 30, 40, 50, and 60 W was applied at CF values of 5, 10, 20, and 30 g to reach target LSIs of 4, 5, 6, and 7. Lesion size and steam pops were recorded for each ablation. RESULTS: Lesion size was positively correlated with LSI regardless of power settings (p < 0.001). The linear correlation coefficients of lesion size and LSI decreased at higher power settings. At high power combined with high CF settings (50 W/20 g), lesion depth and LSI showed an irrelevant correlation (p = 0.7855). High-power ablation shortened ablation time and increased the effect of resistive heating. LSI could predict the risk of steam pops at high-power settings with the optimal threshold of 5.65 (sensitivity, 94.1%; specificity, 46.1%). The ablation depth of the heavy heart was shallower than that of the light heart under similar ablation settings. CONCLUSIONS: LSI could predict radiofrequency lesion size and steam pops at high power settings in vitro, while synchronous high power and high CF should be avoided. Lighter hearts require relatively lower ablation settings to create appropriate ablation depth.


Assuntos
Ablação por Cateter , Vapor , Suínos , Animais , Miocárdio/patologia
14.
Int J Mol Sci ; 24(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36675183

RESUMO

Cuproptosis resulting from copper (Cu) overload has not yet been investigated in diabetic cardiomyopathy (DCM). Advanced glycosylation end products (AGEs) induced by persistent hyperglycemia play an essential role in cardiotoxicity. To clarify whether cuproptosis was involved in AGEs-induced cardiotoxicity, we analyzed the toxicity of AGEs and copper in AC16 cardiomyocytes and in STZ-induced or db/db-diabetic mouse models. The results showed that copper ionophore elesclomol induced cuproptosis in cardiomyocytes. It was only rescued by copper chelator tetrathiomolybdate rather than by other cell death inhibitors. Intriguingly, AGEs triggered cardiomyocyte death and aggravated it when incubated with CuCl2 or elesclomol-CuCl2. Moreover, AGEs increased intracellular copper accumulation and exhibited features of cuproptosis, including loss of Fe-S cluster proteins (FDX1, LIAS, NDUFS8 and ACO2) and decreased lipoylation of DLAT and DLST. These effects were accompanied by decreased mitochondrial oxidative respiration, including downregulated mitochondrial respiratory chain complex, decreased ATP production and suppressed mitochondrial complex I and III activity. Additionally, AGEs promoted the upregulation of copper importer SLC31A1. We predicted that ATF3 and/or SPI1 might be transcriptional factors of SLC31A1 by online databases and validated that by ATF3/SPI1 overexpression. In diabetic mice, copper and AGEs increases in the blood and heart were observed and accompanied by cardiac dysfunction. The protein and mRNA profile changes in diabetic hearts were consistent with cuproptosis. Our findings showed, for the first time, that excessive AGEs and copper in diabetes upregulated ATF3/SPI1/SLC31A1 signaling, thereby disturbing copper homeostasis and promoting cuproptosis. Collectively, the novel mechanism might be an alternative potential therapeutic target for DCM.


Assuntos
Apoptose , Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Animais , Camundongos , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/genética , Cardiotoxicidade/metabolismo , Cobre/metabolismo , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Glicosilação , Miócitos Cardíacos/metabolismo
15.
Adv Colloid Interface Sci ; 311: 102826, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36528919

RESUMO

Multiphase displacement in porous media can be adjusted by micro/nanoparticle suspensions, which is widespread in many scientific and industrial contexts. Direct visualization of suspension flow dynamics and corresponding multiphase patterns is crucial to understanding displacement mechanisms and eventually optimizing these processes in geological, biological, chemical, and other engineering systems. However, suspension flow inside the opaque realistic porous media makes direct observation challenging. The advances in microfluidic experiments have provided us with alternative methods to observe suspension influence on the interface and multiphase flow behaviors at high temporal and spatial resolutions. Macroscale processes are controlled by microscale interfacial behaviors, which are affected by multiple physical factors, such as particle adsorption, capillarity, and hydrodynamics. These properties exerted on the suspension flow in porous media may lead to interesting interfacial phenomena and new displacement consequences. As an underpinning science, understanding and controlling the suspension transport process from interface to flow patterns in porous media is critical for a lower operating cost to improve resource production while reducing harmful emissions and other environmental impacts. This review summarizes the basic properties of different micro/nanoparticle suspensions and the state-of-the-art microfluidic techniques for displacement research activities in porous media. Various suspension transport behaviors and displacement mechanisms explored by microfluidic experiments are comprehensively reviewed. This review is expected to boost both experimental and theoretical understanding of suspension transport and interfacial interaction processes in porous media. It also brings forward the challenges and opportunities for future research in controlling complex fluid flow in porous media for diverse applications.


Assuntos
Microfluídica , Nanopartículas , Porosidade , Suspensões , Hidrodinâmica
16.
Cancer Cell Int ; 22(1): 304, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207761

RESUMO

BACKGROUND: Mitophagy is a type of selective autophagy for dysfunctional mitochondria and plays a key role in tumorigenesis and cancer progression. However, whether mitophagy plays a role in colon cancer remains unclear. Cirsiliol is a natural product and has been found to exert anti-cancer effects in multiple tumors. The effects of cirsiliol in the tumorigenesis and progression of colon cancer remain unknown. METHODS: CCK8 assay, plate cloning assay, and cell scratch assay were performed to determine cell viability, colony formation, and wound healing abilities of HCT116 and SW480 cells. JC-1 staining, H2DCFDA staining, and Mito-Tracker Red staining were carried out to evaluate mitochondrial membrane potential (Δψm), intracellular reactive oxygen species (ROS) level, and mitochondrial morphology. Molecular docking technology was utilized to predict interaction of cirsiliol and signal transducer and activator of transcription 3 (STAT3). Immunofluorescence staining was used to measure nuclear translocation of STAT3. The protein levels of phosphorylated STAT3 (Y705), total STAT3, and mitophagy proteins were detected by western blot. RESULTS: In this study, we first found that cirsiliol inhibited cell viability, colony formation, and wound healing abilities of HCT116 and SW480 colon cancer cells. Moreover, cirsiliol suppressed Δψm, increased ROS production, and disrupted mitochondrial morphology via inhibiting the levels of mitophagy proteins including PINK1, Parkin, BNIP3, and FUNDC1. Application of mitophagy activator improved the levels of mitophagy-related proteins, and ameliorated Δψm and ROS levels. According to the result of molecular docking, we found that cirsiliol potentially bound to the SH2 domain of STAT3, the key domain for the functional activation of STAT3. Moreover, it was found that cirsiliol inhibited constitutive and IL­6­induced STAT3 phosphorylation and nuclear translocation by western blot and immunofluorescence analysis. Comparing with cirsiliol group, we found that overexpression of STAT3 restored the expressions of mitophagy proteins. CONCLUSIONS: Cirsiliol targets STAT3 to inhibit colon cancer cell proliferation by regulating mitophagy.

17.
Front Endocrinol (Lausanne) ; 13: 1011383, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313766

RESUMO

Diabetic cardiomyopathy (DCM) is a severe complication of diabetes mellitus that is characterized by aberrant myocardial structure and function and is the primary cause of heart failure and death in diabetic patients. Endothelial dysfunction plays an essential role in diabetes and is associated with an increased risk of cardiovascular events, but its role in DCM is unclear. Previously, we showed that S-nitroso-L-cysteine(CSNO), an endogenous S-nitrosothiol derived from eNOS, inhibited the activity of protein tyrosine phosphatase 1B (PTP1B), a critical negative modulator of insulin signaling. In this study, we reported that CSNO treatment induced cellular insulin-dependent and insulin-independent glucose uptake. In addition, CSNO activated insulin signaling pathway and promoted GLUT4 membrane translocation. CSNO protected cardiomyocytes against high glucose-induced injury by ameliorating excessive autophagy activation, mitochondrial impairment and oxidative stress. Furthermore, nebulized CSNO improved cardiac function and myocardial fibrosis in diabetic mice. These results suggested a potential site for endothelial modulation of insulin sensitivity and energy metabolism in the development of DCM. Data from these studies will not only help us understand the mechanisms of DCM, but also provide new therapeutic options for treatment.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , S-Nitrosotióis , Camundongos , Animais , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/prevenção & controle , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/induzido quimicamente , S-Nitrosotióis/efeitos adversos , S-Nitrosotióis/metabolismo , Insulina/efeitos adversos
18.
J Colloid Interface Sci ; 627: 848-861, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35901564

RESUMO

HYPOTHESIS: Preferential flow in porous media is commonly encountered and decreases the multiphase displacement efficiency. Here, we synthesized microgel-in-oil in suspension and demonstrated that microgel-in-oil as a novel additive could present self-adaptive transport behavior and introduce a novel multiphase displacement mode for improving displacement efficiency in heterogeneous porous media. EXPERIMENTS: We investigated the microgel-in-oil formation process and characterized their morphology with fluorescence microscopy and Cryo-SEM. The suspension displacement performance in heterogeneous porous media was evaluated using a microfluidic chip containing a preferential flow pathway (PFP) and a parallel matrix region. The displacement results of microgel-in-oil were compared to plain microgel particles and analyzed from pore-scale particle transport behavior to macroscopic multiphase flow patterns. FINDINGS: The results show that suspension with moderate microgel-in-oil yields the optimal displacement efficiency. Fewer microgel-in-oil cannot alter the flow direction, while too many microgel-in-oil would block the PFP region. The topological analysis identified that suspensions with moderate microgel-in-oil content could achieve the strongest sweeping and carrying abilities that contribute to the highest displacement efficiency. The synergistic transport of microgel-in-oil and plain microgel particles would result in local pressure fluctuations to divert displacing fluid from PFP into the matrix region, which explains the above flow behavior.


Assuntos
Microgéis , Microfluídica/métodos , Porosidade
19.
Front Endocrinol (Lausanne) ; 13: 851941, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464057

RESUMO

The cardiovascular complications contribute to a majority of diabetes associated morbidity and mortality, accounting for 44% of death in those patients with type 1 diabetes mellitus (DM) and 52% of deaths in type 2 DM. Diabetes elicits cardiovascular dysfunction through 2 major mechanisms: ischemic and non-ischemic. Non-ischemic injury is usually under-recognized although common in DM patients, and also a pathogenic factor of heart failure in those diabetic individuals complicated with ischemic heart disease. Diabetic cardiomyopathy (DCM) is defined as a heart disease in which the myocardium is structurally and functionally abnormal in the absence of coronary artery disease, hypertensive, valvular, or congenital heart disorders in diabetic patients, theoretically caused by non-ischemic injury solely. Current therapeutic strategies targeting DCM mainly address the increased blood glucose levels, however, the effects on heart function are disappointed. Accumulating data indicate endothelial dysfunction plays a critical role in the initiation and development of DCM. Hyperglycemia, hyperinsulinemia, and insulin resistance cause the damages of endothelial function, including barrier dysfunction, impaired nitric oxide (NO) activity, excessive reactive oxygen species (ROS) production, oxidative stress, and inflammatory dysregulation. In turn, endothelial dysfunction promotes impaired myocardial metabolism, intracellular Ca2+ mishandling, endoplasmic reticulum (ER) stress, mitochondrial defect, accumulation of advanced glycation end products, and extracellular matrix (ECM) deposit, leads to cardiac stiffness, fibrosis, and remodeling, eventually results in cardiac diastolic dysfunction, systolic dysfunction, and heart failure. While endothelial dysfunction is closely related to cardiac dysfunction and heart failure seen in DCM, clinical strategies for restoring endothelial function are still missing. This review summarizes the timely findings related to the effects of endothelial dysfunction on the disorder of myocardium as well as cardiac function, provides mechanical insights in pathogenesis and pathophysiology of DCM developing, and highlights potential therapeutic targets.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Insuficiência Cardíaca , Hiperglicemia , Diabetes Mellitus/patologia , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/metabolismo , Insuficiência Cardíaca/complicações , Humanos , Hiperglicemia/complicações , Miocárdio/patologia , Estresse Oxidativo/fisiologia
20.
J Colloid Interface Sci ; 619: 331-338, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35398764

RESUMO

Understanding of thermal effects on ion transport in porous media is very important for environmental applications. The movement of ions along a temperature gradient is named thermophoresis or thermodiffusion. In nanoporous media, where the interaction of ions with solid-liquid interfaces has a significant influence on their migration, the theoretical understanding of thermodiffusion is still incomplete. Herein, we present experimental results for the thermodiffusion of cations in saturated nanoporous silica by the through-diffusion method. Both the experimental data and theoretical analysis indicate that the temperature-induced polarization of surface charges strongly influences ionic transport. Stated simply, the electric field in a liquid electrolyte confined in nanopores changes when the applied temperature gradients are altered, thereby affecting the motion of the nanoconfined ionic species. By applying an external temperature field, the gradient of the surface charge density leads to the charged aqueous species exhibiting strong temperature gradient-dependent electrophoretic mobility. When the thickness of the electrical double layer is comparable to the size of the nanopores, the theory used herein indicates that this kind of nonisothermal ionic mobility is up to one order of magnitude larger than classical thermophoretic mobility. This study improves the understanding of the underlying mechanisms that govern the transport of ions in nanoporous media, which could set the stage for diffusional metamaterials induced by specific thermal fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...