Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2310681, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38462953

RESUMO

2D materials, with advantages of atomic thickness and novel physical/chemical characteristics, have emerged as the vital building blocks for advanced lamellar membranes which possess promising potential in energy storage, ion separation, and catalysis. When 2D materials are stacked together, the van der Waals (vdW) force generated between adjacent layered nanosheets induces the construction of an ordered lamellar membrane. By regulating the interlayer spacing down to the nanometer or even sub-nanometer scale, rapid and selective ion transport can be achieved through such vdW gaps. The further improvement and application of qualified 2D materials-based lamellar membranes (2DLMs) can be fulfilled by the rational design of nanochannels and the intelligent micro-environment regulation under different stimuli. Focusing on the newly emerging advances of 2DLMs, in this review, the common top-down and bottom-up synthesis approaches of 2D nanosheets and the design strategy of functional 2DLMs are briefly introduced. Two essential ion transport mechanisms within vdW gaps are also involved. Subsequently, the responsive 2DLMs based on different types of external stimuli and their unique applications in nanofluid transport, membrane-based filters, and energy storage are presented. Based on the above analysis, the existing challenges and future developing prospects of 2DLMs are further proposed.

2.
Nano Lett ; 23(17): 8106-8114, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37610427

RESUMO

Quasi-solid-state electrolytes (QSSEs) are gaining huge popularity because of their significantly improved safety performance over nonaqueous liquid electrolytes and superior process adaptability over all-solid-state electrolytes. However, because of the existence of liquid molecules, QSSEs typically have low lithium ion transference numbers and compromised thermal stability. In this work, we present the fabrication of a well-rounded QSSE by introducing hexagonal boron nitride nanoflakes (BNNFs) as an inorganic filler in a poly(vinylene carbonate) matrix. BNNFs, in contrast to most inorganic fillers used as anion trappers, are used to build fast lithium ion transport pathways directly on their two-dimensional surfaces. We confirm the attractive coupling between lithium ions and BNNFs, and we confirm that with the help of BNNFs, lithium ions can migrate with less damping and a lower transport energy barrier. As a result, the designed electrolyte exhibits good ion transportability, promoted fire retardancy, and good compatibility with lithium metal anodes and commercial cathodes.

3.
World J Clin Oncol ; 13(9): 729-737, 2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36212599

RESUMO

Immunotherapy has shown great promise in treating various types of malignant tumors. However, some patients with gastrointestinal cancer have been known to experience rapid disease progression after treatment, a situation referred to as hyperprogressive disease (HPD). This minireview focuses on the definitions and potential mechanisms of HPD, natural disease progression in gastrointestinal malignancies, and tumor immunological microenvironment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...