Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1726, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409174

RESUMO

Electronic processors are reaching the physical speed ceiling that heralds the era of optical processors. Multifunctional all-optical logic gates (AOLGs) of massively parallel processing are of great importance for large-scale integrated optical processors with speed far in excess of electronics, while are rather challenging due to limited operation bandwidth and multifunctional integration complexity. Here we for the first time experimentally demonstrate a reconfigurable all-in-one broadband AOLG that achieves nine fundamental Boolean logics in a single configuration, enabled by ultrabroadband (400-4000 nm) plasmon-enhanced thermo-optical nonlinearity (TONL) of liquid-metal Galinstan nanodroplet assemblies (GNAs). Due to the unique heterogeneity (broad-range geometry sizes, morphology, assembly profiles), the prepared GNAs exhibit broadband plasmonic opto-thermal effects (hybridization, local heating, energy transfer, etc.), resulting in a huge nonlinear refractive index under the order of 10-4-10-5 within visual-infrared range. Furthermore, a generalized control-signal light route is proposed for the dynamic TONL modulation of reversible spatial-phase shift, based on which nine logic functions are reconfigurable in one single AOLG configuration. Our work will provide a powerful strategy on large-bandwidth all-optical circuits for high-density data processing in the future.

2.
Sci Rep ; 9(1): 19457, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31857607

RESUMO

Layered transitional metal dichalcogenides (TMDs) are drawing significant attentions for the applications of optics and optoelectronics. To achieve optimal performances of functional devices, precisely controlled doping engineering of 2D TMDs alloys has provided a reasonable approach to tailor their physical and chemical properties. By the chemical vapor transport (CVT) method and liquid phase exfoliation technique, in this work, we synthesized WS1.76Te0.24 saturable absorber (SA) which exhibited high-performance of nonlinear optics. The nonlinear saturable absorption of the WS1.76Te0.24 SA was also measured by the open aperture Z-scan technique. Compared to that of the binary component WS2 and WTe2, WS1.76Te0.24 SA has shown 4 times deeper modulation depth, 28% lower saturable intensity and a much faster recovery time of 3.8 ps. The passively Q-switched laser based on WS1.76Te0.24 was more efficient, with pulse duration narrowed to 18%, threshold decreased to 28% and output power enlarged by 200%. The promising findings can provide a method to optimize performances of functional devices by doping engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...