Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Regul Toxicol Pharmacol ; 63(1): 10-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22369873

RESUMO

Hazard identification and dose-response assessment for chemicals of concern found in various environmental media are typically based on epidemiological and/or animal toxicity data. However, human health risk assessments are often requested for many compounds found at contaminated sites throughout the US that have limited or no available toxicity information from either humans or animals. To address this issue, recent efforts have focused on expanding the use of structure-activity relationships (SAR) approaches to identify appropriate surrogates and/or predict toxicological phenotype(s) and associated adverse effect levels. A tiered surrogate approach (i.e., decision tree) based on three main types of surrogates (structural, metabolic, and toxicity-like) has been developed. To select the final surrogate chemical and its surrogate toxicity value(s), a weight-of-evidence approach based on the proposed decision tree is applied. In addition, a case study with actual toxicity data serves as the evaluation to support our tiered surrogate approach. Future work will include case studies demonstrating the utility of the surrogate approach under different scenarios for data-poor chemicals. In conclusion, our surrogate approach provides a reasonable starting point for identifying potential toxic effects, target organs, and/or modes-of-action, and for selecting surrogate chemicals from which to derive either reference or risk values.


Assuntos
Poluentes Ambientais/toxicidade , Medição de Risco/métodos , Animais , Derivados de Benzeno/toxicidade , Árvores de Decisões , Humanos
2.
Regul Toxicol Pharmacol ; 59(2): 215-26, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20951756

RESUMO

The overall risk associated with exposure to a chemical is determined by combining quantitative estimates of exposure to the chemical with their known health effects. For chemicals that cause carcinogenicity, oral slope factors (OSFs) and inhalation unit risks are used to quantitatively estimate the carcinogenic potency or the risk associated with exposure to the chemical by oral or inhalation route, respectively. Frequently, there is a lack of animal or human studies in the literature to determine OSFs. This study aims to circumvent this problem by developing quantitative structure-activity relationship (QSAR) models to predict the OSFs of chemicals. The OSFs of 70 chemicals based on male/female human, rat, and mouse bioassay data were obtained from the United States Environmental Protection Agency's Integrated Risk Information System (IRIS) database. A global QSAR model that considered all 70 chemicals as well as species and/or sex-specific QSARs were developed in this study. Study results indicate that the species and sex-specific QSARs (r(2)>0.8, q(2)>0.7) had a better predictive abilities than the global QSAR developed using data from all species and sexes (r(2)=0.77, q(2)=0.73). The QSARs developed in this study were externally validated, and demonstrated reasonable predictive abilities.


Assuntos
Testes de Carcinogenicidade/métodos , Carcinógenos/química , Carcinógenos/toxicidade , Modelos Químicos , Animais , Feminino , Humanos , Masculino , Camundongos , Relação Quantitativa Estrutura-Atividade , Ratos , Análise de Regressão , Medição de Risco/métodos , Estados Unidos , United States Environmental Protection Agency
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...