Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 9(9)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564292

RESUMO

Central for wound healing is the formation of granulation tissue, which largely consists of collagen and whose importance stretches past wound healing, including being implicated in both fibrosis and skin aging. Cyclophilin D (CyD) is a mitochondrial protein that regulates the permeability transition pore, known for its role in apoptosis and ischemia-reperfusion. To date, the role of CyD in human wound healing and collagen generation has been largely unexplored. Here, we show that CyD was upregulated in normal wounds and venous ulcers, likely adaptive as CyD inhibition impaired reepithelialization, granulation tissue formation, and wound closure in both human and pig models. Overexpression of CyD increased keratinocyte migration and fibroblast proliferation, while its inhibition reduced migration. Independent of wound healing, CyD inhibition in fibroblasts reduced collagen secretion and caused endoplasmic reticulum collagen accumulation, while its overexpression increased collagen secretion. This was confirmed in a Ppif-KO mouse model, which showed a reduction in skin collagen. Overall, this study revealed previously unreported roles of CyD in skin, with implications for wound healing and beyond.


Assuntos
Colágeno , Fibroblastos , Camundongos Knockout , Peptidil-Prolil Isomerase F , Pele , Cicatrização , Animais , Feminino , Humanos , Masculino , Camundongos , Movimento Celular , Proliferação de Células , Colágeno/metabolismo , Ciclofilinas/metabolismo , Ciclofilinas/genética , Modelos Animais de Doenças , Fibroblastos/metabolismo , Tecido de Granulação/metabolismo , Tecido de Granulação/patologia , Queratinócitos/metabolismo , Peptidil-Prolil Isomerase F/metabolismo , Peptidil-Prolil Isomerase F/genética , Pele/metabolismo , Pele/patologia , Suínos , Cicatrização/fisiologia
2.
Comput Biol Med ; 168: 107803, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38064854

RESUMO

Medical image segmentation faces current challenges in effectively extracting and fusing long-distance and local semantic information, as well as mitigating or eliminating semantic gaps during the encoding and decoding process. To alleviate the above two problems, we propose a new U-shaped network structure, called CFATransUnet, with Transformer and CNN blocks as the backbone network, equipped with Channel-wise Cross Fusion Attention and Transformer (CCFAT) module, containing Channel-wise Cross Fusion Transformer (CCFT) and Channel-wise Cross Fusion Attention (CCFA). Specifically, we use a Transformer and CNN blocks to construct the encoder and decoder for adequate extraction and fusion of long-range and local semantic features. The CCFT module utilizes the self-attention mechanism to reintegrate semantic information from different stages into cross-level global features to reduce the semantic asymmetry between features at different levels. The CCFA module adaptively acquires the importance of each feature channel based on a global perspective in a network learning manner, enhancing effective information grasping and suppressing non-important features to mitigate semantic gaps. The combination of CCFT and CCFA can guide the effective fusion of different levels of features more powerfully with a global perspective. The consistent architecture of the encoder and decoder also alleviates the semantic gap. Experimental results suggest that the proposed CFATransUnet achieves state-of-the-art performance on four datasets. The code is available at https://github.com/CPU0808066/CFATransUnet.


Assuntos
Aprendizagem , Semântica , Processamento de Imagem Assistida por Computador
3.
ACS Omega ; 8(50): 48028-48041, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38144133

RESUMO

Metformin (MET), commonly marketed as a hydrochloride salt (MET-HCl) for better pharmacokinetic profile over the free base, would release a high concentration of chloride ions and cause adverse gastrointestinal effects. The preparation of chloride-free MET salts could potentially circumvent this issue. In this study, seven carboxylic acids (formic acid, acetic acid, malonic acid, succinic acid, fumaric acid, cinnamic acid, and acetylsalicylic acid) were used for preparing MET carboxylate salts. When compared with MET-HCl, all MET salts/salt hydrates show lower dissolution rates in pH 6.8 phosphate buffer. However, the cinnamic acid and acetylsalicylic acid show significantly higher dissolution rates in the forms of MET salt/salt hydrate. In the permeability test, the permeability of the MET in all of the salts was not improved. However, the permeability of cinnamic acid in the MET cinnamate is reduced, and the permeability of acetylsalicylic acid in the MET acetylsalicylate is increased. Meanwhile, at a higher crystallization temperature, the acetone solvent and a hydrolyzed product of acetylsalicylic acid react with MET respectively, leading to two unexpected 1,3,5-triazine derivatives. The results of in vitro bioactivity assays indicate that one of the triazine molecules promote glucose consumption more effectively than MET-HCl, and had relatively weak lactate production ability at low concentration. This glucose metabolism regulating compound may serve as a novel lead antihyperglycemic agent for further optimization.

4.
Mol Biol Rep ; 50(3): 1981-1991, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36536184

RESUMO

BACKGROUND: Fibroblast growth factors (FGFs) are key factors affecting diabetic wound healing. However, the FGF family's expression patterns in skin and wounds influenced by both diabetes and sex are still unknown. METHODS AND RESULTS: In this study, normal and Streptozotocin (STZ)-induced type 1 diabetic C57BL/6J male and female mice were used to study the FGF family's expression in non-wound skin and wounds. We found that the expression patterns of Fgfs were affected by sex in both normal and diabetic animals during wound healing. In normal control mice, sex difference had a limited effect on basal skin Fgf expressions. However, it significantly influenced Fgf expressions in wounds. Type 1 diabetes reduced basal and wound-induced skin Fgf expressions. Female mice had far lower wound-induced skin Fgf expressions in diabetic mice. In addition, sex differently influenced Fibroblast growth factors receptor (Fgfr) expression patterns of non-wound skin and wounds in both normal and diabetic mice. Moreover, female mice had a lower relative level of Fibronectin leucine-rich repeat transmembrane protein 2 (FLRT2) - a FGFR activation marker gene - in wound and blood plasma. Correspondingly, the wound areas of female animals were larger than that of male animals in the early stage of wound healing (less than 3-day injury). CONCLUSION: Our research shows that the FGF family have different expression patterns in normal and diabetic wound healing in mice of different sex. Additionally, we also provide the signatures of individual FGFs in diabetic wound healing, which deserve further investigation.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Camundongos , Feminino , Masculino , Animais , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Estreptozocina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Caracteres Sexuais , Camundongos Endogâmicos C57BL , Pele/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Glicoproteínas de Membrana/metabolismo
5.
Pharmacol Res ; 185: 106468, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36167277

RESUMO

Urotensin receptor (UT) is a G-protein-coupled receptor, whose endogenous ligand is urotensin-II (U-II). Skeletal muscle mass is regulated by various conditions, such as nutritional status, exercise, and diseases. Previous studies have pointed out that the urotensinergic system is involved in skeletal muscle metabolism and function, but its mechanism remains unclear, especially given the lack of research on the effect and mechanism of fasting. In this study, UT receptor knockout mice were generated to evaluate whether UT has effects on fasting induced skeletal muscle atrophy. Furthermore, the UT antagonist palosuran (3, 10, 30 mg/kg) was intraperitoneally administered daily for 5 days to clarify the therapeutic effect of UT antagonism. Our results found the mice that fasted for 48 h exhibited skeletal muscle atrophy, accompanied by enhanced U-II levels in both skeletal muscles and blood. UT receptor knockout effectively prevented fasting-induced skeletal muscle atrophy. The UT antagonist ameliorated fasting-induced muscle atrophy in mice as determined by increased muscle strengths, weights, and muscle fiber areas (including fast, slow, and mixed types). In addition, the UT antagonist reduced skeletal muscle atrophic markers, including F-box only protein 32 (FBXO32) and tripartite motif containing 63 (TRIM63). Moreover, the UT antagonist was also observed to enhance PI3K/AKT/mTOR while inhibiting autophagy signaling. In summary, our study provides the first evidence that UT antagonism may represent a novel therapeutic approach for the treatment of fasting-induced skeletal muscle atrophy.


Assuntos
Músculo Esquelético , Atrofia Muscular , Receptores Acoplados a Proteínas G , Urotensinas , Animais , Camundongos , Jejum , Camundongos Knockout , Músculo Esquelético/patologia , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/patologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/metabolismo , Urotensinas/metabolismo
7.
Pharmacol Res ; 172: 105807, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34389456

RESUMO

Skeletal muscle is a crucial tissue for movement, gestural assistance, metabolic homeostasis, and thermogenesis. It makes up approximately 40% of the total body weight and 50% of total protein. However, several pathological abnormalities (e.g., chronic diseases, cancer, long-term infection, aging) can induce an imbalance in skeletal muscle protein synthesis and degradation, which triggers muscle wasting and even leads to atrophy. Skeletal muscle atrophy is characterized by weakening, shrinking, and decreasing muscle mass and fiber cross-sectional area at the histological level. It manifests as a reduction in force production, easy fatigue and decreased exercise capability, along with a lower quality of life. Mechanistically, there are several pathophysiological processes involved in skeletal muscle atrophy, including oxidative stress and inflammation, which then activate signal transduction, such as the ubiquitin proteasome system, autophagy lysosome system, and mTOR. Considering the great economic and social burden that muscle atrophy can inflict, effective prevention and treatment strategies are essential but still limited. Exercise is widely acknowledged as the most effective therapy for skeletal muscle atrophy; unfortunately, it is not applicable for all patients. Several active substances for skeletal muscle atrophy have been discovered and evaluated in clinical trials, however, they have not been marketed to date. Knowledge is being gained on the underlying mechanisms, highlighting more promising treatment strategies in the future. In this paper, the mechanisms and treatment strategies for skeletal muscle atrophy are briefly reviewed.


Assuntos
Músculo Esquelético/patologia , Atrofia Muscular , Animais , Humanos , Músculo Esquelético/metabolismo , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/metabolismo
8.
Biomed Pharmacother ; 133: 110977, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33249280

RESUMO

Puerarin is an isoflavonoid extracted from Pueraria lobate with extensive pharmacological effects in traditional Chinese medicine. The evidence implicates that puerarin mitigates hyperglycemia and various relevant complications. Here, the effect of puerarin on skeletal muscle wasting induced by type 1 diabetes (T1D) was explored. Streptozotocin (STZ)-induced T1D male Sprague Dawley (SD) rats were used in this study. Muscle strength, weight and size were measured. L6 rat skeletal muscle cells were applied for in vitro study. Our results showed that eight-week oral puerarin administration (100 mg/kg) increased muscle strengths and weights accompanied by enhanced skeletal muscle cross-sectional areas in diabetic rats. Simultaneously, puerarin also reduced expressions of several muscle wasting marker genes including F-box only protein 32 (Atrogin-1) and muscle-specific RING-finger 1 (Murf-1) in diabetic group both in vitro and in vivo. Transformation from type I fibers (slow muscle) to type II fibers (fast muscle) were also observed under puerarin administration in diabetic rats. Puerarin promoted Akt/mTOR while inhibited LC3/p62 signaling pathway in skeletal muscle cells. In conclusion, our study showed that puerarin mitigated skeletal muscle wasting in T1D rats and closely related with Akt/mTOR activation and autophagy inhibition. Whether this effect in murine applies to humans remains to be determined.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Isoflavonas/farmacologia , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Atrofia Muscular/prevenção & controle , Animais , Glicemia/metabolismo , Linhagem Celular , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/induzido quimicamente , Masculino , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Rápida/patologia , Fibras Musculares de Contração Lenta/metabolismo , Fibras Musculares de Contração Lenta/patologia , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Força Muscular/efeitos dos fármacos , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Estreptozocina , Serina-Treonina Quinases TOR/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
9.
Biol Sex Differ ; 11(1): 9, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32156311

RESUMO

Fibroblast growth factors (FGFs) belong to a large family comprising 22 FGF polypeptides that are widely expressed in tissues. Most of the FGFs can be secreted and involved in the regulation of skeletal muscle function and structure. However, the role of fasting on FGF expression pattern in skeletal muscles remains unknown. In this study, we combined bioinformatics analysis and in vivo studies to explore the effect of 24-h fasting on the expression of Fgfs in slow-twitch soleus and fast-twitch tibialis anterior (TA) muscle from male and female C57BL/6 mice. We found that fasting significantly affected the expression of many Fgfs in mouse skeletal muscle. Furthermore, skeletal muscle fibre type and sex also influenced Fgf expression and response to fasting. We observed that in both male and female mice fasting reduced Fgf6 and Fgf11 in the TA muscle rather than the soleus. Moreover, fasting reduced Fgf8 expression in the soleus and TA muscles in female mice rather than in male mice. Fasting also increased Fgf21 expression in female soleus muscle and female and male plasma. Fasting reduced Fgf2 and Fgf18 expression levels without fibre-type and sex-dependent effects in mice. We further found that fasting decreased the expression of an FGF activation marker gene-Flrt2 in the TA muscle but not in the soleus muscle in both male and female mice. This study revealed the expression profile of Fgfs in different skeletal muscle fibre types and different sexes and provides clues to the interaction between the skeletal muscle and other organs, which deserves future investigations.


Assuntos
Jejum/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Caracteres Sexuais , Animais , Biologia Computacional , Feminino , Fatores de Crescimento de Fibroblastos/sangue , Masculino , Camundongos Endogâmicos C57BL
10.
Artigo em Inglês | MEDLINE | ID: mdl-31379736

RESUMO

Urotensin-II (U-II) is an endogenous peptide agonist of a G protein-coupled receptor-urotensin receptor. There are many conflicting findings about the effects of U-II on blood glucose. This study aims to explore the effects of U-II on glucose metabolism in high-fat diet-fed mice. Male C57BL/6J mice were fed a 45% high-fat diet or chow diet and were administered U-II intraperitoneally for in vivo study. Skeletal muscle C2C12 cells were used to determine the effects of U-II on glucose and fatty acid metabolism as well as mitochondrial respiratory function. In this study, we found that chronic U-II administration (more than 7 days) ameliorated glucose tolerance in high-fat diet-fed mice. In addition, chronic U-II administration reduced the weight gain and the adipose tissue weight, including visceral, subcutaneous, and brown adipose tissue, without a significant change in blood lipid levels. These were accompanied by the increased mRNA expression of the mitochondrial thermogenesis gene Ucp3 in skeletal muscle. Furthermore, in vitro treatment with U-II directly enhanced glucose and free fatty acid consumption in C2C12 cells with increased aerobic respiration. Taken together, chronic U-II stimulation leads to improvement on glucose tolerance in high-fat diet-fed mice and this effect maybe closely related to the reduction in adipose tissue weights and enhancement on energy substrate utilization in skeletal muscle.

11.
Eur J Pharmacol ; 859: 172523, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31279667

RESUMO

Many drugs with anti-diabetic effects regulate glucose consumption in peripheral tissues. Via cellular glucose consumption assays, we identified that coptisine, a main effective constituent from the plant Coptis chinensis, enhanced hepatic and skeletal muscle glucose consumption. We further explored its effects on glucose metabolism in diabetic animals to elucidate its mechanism of action. Our results showed that coptisine did not show cytotoxicity. Intragastric administration of coptisine for ten days in normal ICR mice markedly decreased fasting blood-glucose levels without significant effects on body weight. In alloxan-induced type 1 diabetic mice, intragastric administration of coptisine for 28 days decreased fasting and non-fasting blood-glucose levels as well. In type 2 diabetic KKAy mice, intragastric administration of coptisine for nine weeks improved glucose tolerance. It decreased fasting/non-fasting blood-glucose and fructosamine levels. Coptisine decreased low-density lipoprotein and total cholesterol levels, however, had no significant effect on triglyceride levels. Coptisine increased AMPK phosphorylation while decreasing Akt phosphorylation in HepG2 hepatic cells and C2C12 myotubes. Coptisine also reduced mitochondrial respiration in isolated and cellular mitochondria, suggesting that coptisine lowered cellular energy levels. In particularly, coptisine administration (10-6 M) decreased the mitochondrial oxygen consumption rate (OCR) with a greater extracellular acidification rate (ECAR), resulting in an oxidative-to-glycolysis phosphorylation shifted for cellular energy generation. Our results demonstrate that coptisine acts as an enhancer of peripheral glucose consumption could improve glucose metabolism in diabetic animals. Coptisine may serve as a novel anti-diabetic agent and warrant further evaluation.


Assuntos
Berberina/análogos & derivados , Glicemia/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Hipoglicemiantes/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Berberina/farmacologia , Berberina/uso terapêutico , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/patologia , Ativação Enzimática/efeitos dos fármacos , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Células Hep G2 , Humanos , Hipoglicemiantes/uso terapêutico , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Ratos
12.
Biochem Biophys Res Commun ; 514(2): 407-414, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31056256

RESUMO

Skeletal muscle secretes myokines, which are involved in metabolism and muscle function regulation. The role of fasting on myokine expression in skeletal muscle is largely unknown. In this study, we used gastrocnemius skeletal muscle RNA sequencing data from fasting male mice in the Gene Expression Omnibus (GEO) database. Adopted male and female C57BL/6J mice that fasted for 24 h were included to examine the effect of fasting on myokine expression in slow-twitch soleus and fast-twitch tiabialis anterior (TA) skeletal muscle. We found that fasting significantly affected many myokines in muscle. Fasting reduced Fndc5 and Igf1 gene expression in soleus and TA muscles in both male and female mice without muscle phenotype or gender differences, but Il6, Mstn and Erfe expression was influenced by fasting with fibre type- and gender-dependent effects. Fasting also induced muscle atrophy marker genes Murf1 and Fbxo32 and reduced myogenesis factor Mef2 expression without muscle fibre or gender differences. We further found that the expression of transcription factors Pgc1α, Pparα, Pparγ and Pparδ had muscle fibre type-dependent effects, and the expression of Pgc1α and Pparα had gender-dependent effects. The sophisticated expression pattern of myokines would partially explain the complicated cross-talk between skeletal muscle and other organs in different genders and muscles phenotypes, and it is worth further investigation.


Assuntos
Citocinas/genética , Jejum/fisiologia , Regulação da Expressão Gênica , Músculo Esquelético/metabolismo , Caracteres Sexuais , Animais , Citocinas/biossíntese , Feminino , Fibronectinas/genética , Fator de Crescimento Insulin-Like I/genética , Interleucina-6/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/classificação , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/genética , Miostatina/genética , Fenótipo , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...