Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Sci ; 329: 111599, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36682585

RESUMO

The enzyme flavone synthase Is (FNS Is) converts flavanones to flavones, whereas flavanone 3ß-hydroxylases (F3Hs) catalyze the formation of dihydroflavonols, a precursor of flavonols and anthocyanins. Canonical F3Hs have been characterized in seed plants, which are evolutionarily related to liverwort FNS Is. However, as important evolutionary lineages between liverworts and seed plants, ferns FNS Is and F3Hs have not been identified. In the present study, we characterized a bifunctional enzyme PnFNS I/F3H from the fern Psilotum nudum. We found that PnFNS I/F3H catalyzed the conversion of naringenin to apigenin and dihydrokaempferol. In addition, it catalyzed five different flavanones to generate the corresponding flavones. Site-directed mutagenesis results indicated that the P228-Y228 mutant protein displayed the FNS I/F2H activity (catalyzing naringenin to generate apigenin and 2-hydroxynaringenin), thus having similar functions as liverwort FNS I/F2H. Moreover, the overexpression of PnFNS I/F3H in Arabidopsis tt6 and dmr6 mutants increased the content of flavones and flavonols in plants, further indicating that PnFNS I/F3H showed FNS I and F3H activities in planta. This is the first study to characterize a bifunctional enzyme FNS I/F3H in ferns. The functional transition from FNS I/F3H to FNS I/F2H will be helpful in further elucidating the relationship between angiosperm F3Hs and liverwort FNS Is.


Assuntos
Gleiquênias , Flavanonas , Flavonas , Apigenina , Antocianinas , Gleiquênias/metabolismo , Oxigenases de Função Mista/metabolismo , Flavonas/metabolismo , Flavanonas/metabolismo , Flavonóis
2.
Plant Physiol ; 184(4): 1731-1743, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33023939

RESUMO

During the course of evolution of land plants, different classes of flavonoids, including flavonols and anthocyanins, sequentially emerged, facilitating adaptation to the harsh terrestrial environment. Flavanone 3ß-hydroxylase (F3H), an enzyme functioning in flavonol and anthocyanin biosynthesis and a member of the 2-oxoglutarate-dependent dioxygenase (2-ODD) family, catalyzes the hydroxylation of (2S)-flavanones to dihydroflavonols, but its origin and evolution remain elusive. Here, we demonstrate that functional flavone synthase Is (FNS Is) are widely distributed in the primitive land plants liverworts and evolutionarily connected to seed plant F3Hs. We identified and characterized a set of 2-ODD enzymes from several liverwort species and plants in various evolutionary clades of the plant kingdom. The bifunctional enzyme FNS I/F2H emerged in liverworts, and FNS I/F3H evolved in Physcomitrium (Physcomitrella) patens and Selaginella moellendorffii, suggesting that they represent the functional transition forms between canonical FNS Is and F3Hs. The functional transition from FNS Is to F3Hs provides a molecular basis for the chemical evolution of flavones to flavonols and anthocyanins, which contributes to the acquisition of a broader spectrum of flavonoids in seed plants and facilitates their adaptation to the terrestrial ecosystem.


Assuntos
Antocianinas/biossíntese , Antocianinas/genética , Embriófitas/genética , Embriófitas/metabolismo , Flavonas/genética , Flavonas/metabolismo , Flavonóis/biossíntese , Flavonóis/genética , Evolução Química , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genes de Plantas
3.
Plant Sci ; 299: 110577, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32900434

RESUMO

Flavonoid glucosides, typically generated from aglycones via the action of uridine diphosphate-dependent glycosyltransferases (UGTs), both contribute to plant viability and are pharmacologically active. The properties of UGTs produced by liverworts, one of the basal groups of non-vascular land plants, have not been systematically explored. Here, two UGTs potentially involved in flavonoids synthesis were identified from the transcriptome of Plagiochasma appendiculatum. Enzymatic analysis showed that PaUGT1 and PaUGT2 accepted various flavones, flavonols, flavanones and dihydrochalcones as substrates. A mutated form PaUGT1-Q19A exhibited a higher catalytic efficiency than did the wild type enzyme. When expressed in Escherichia coli, the yield of flavonol 7-O-glucosides reached to over 70 %. Co-expression of PaUGT1-Q19A with the upstream flavone synthase I PaFNS I-1 proved able to convert the flavanone aglycones naringenin and eriodictyol into the higher-yield apigenin 7-O-glucoside (A7G) and luteolin 7-O-glucoside (L7G). The maximum concentration of 81.0 µM A7G and 88.6 µM L7G was achieved upon supplementation with 100 µM naringenin and 100 µM eriodictyol under optimized conditions. This is the first time that flavonoids UGTs have been characterized from liverworts and co-expression of UGTs and FNS Is from the same species serves as an effective strategy to synthesize flavone 7-O-glucosides in E. coli.


Assuntos
Glucosídeos/biossíntese , Glicosiltransferases/genética , Hepatófitas/genética , Proteínas de Plantas/genética , Flavonoides/metabolismo , Glucosídeos/economia , Glicosiltransferases/metabolismo , Hepatófitas/enzimologia , Hepatófitas/metabolismo , Filogenia , Proteínas de Plantas/metabolismo
4.
Plant Physiol Biochem ; 155: 716-724, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32862021

RESUMO

Typical plant terpene synthases (TPSs) are responsible for the production of terpenes, a major class of plant secondary metabolites. However, various nonseed plants also harbor genes encoding microbial terpene synthase-like (MTPSL) enzymes. Here, a scan of 31 ferns transcriptomes revealed 40 sequences putatively encoding MTPSLs. Two groups of sequences were recognized based on the key conserved motifs. Four representative genes were isolated from each of the four species Adiantum capillus-veneris, Cyclosorus parasiticus, Drynaria bonii and Microlepia platyphylla. Following their heterologous expression in E. coli, the recombinant proteins were tested for monoterpene synthase and sesquiterpene synthase activity. These enzymatic products were typical monoterpenes and sesquiterpenes that have been previous shown to be generated by classical plant TPSs when provided with GPP and FPP as substrates. Subcellular localization experiments in the leaf epidermis of Nicotiana benthamiana and onion (Allium cepa) inner epidermal cells indicated that AcMTPSL1 and DbMTPSL were deposited in both the cytoplasm and nucleus, whereas CpMTPSL1 and MpMTPSL were localized in the cytoplasm, chloroplasts and nucleus. AcMTPSL1 was up-regulated in plants exposed to methyl jasmonate treatment, suggesting a role for this gene in host defense. This study provides more information about the catalytic function of MTPSLs in nonseed plants and for the first time, the subcellular localization of MTPSLs was experimentally characterized.


Assuntos
Alquil e Aril Transferases/genética , Gleiquênias/enzimologia , Escherichia coli , Gleiquênias/genética , Proteínas de Plantas/genética , Terpenos , Transcriptoma
5.
J Exp Bot ; 71(1): 290-304, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31557291

RESUMO

The distribution of type I and II chalcone isomerases (CHIs) in plants is highly family specific. We have previously reported that ancient land plants, such as the liverworts and Selaginella moellendorffii, harbor type II CHIs. To better understand the function and evolution of CHI-fold proteins, transcriptomic data obtained from 52 pteridophyte species were subjected to sequence alignment and phylogenetic analysis. The residues determining type I/II CHI identity in the pteridophyte CHIs were identical to those of type I CHIs. The enzymatic characterization of a sample of 24 CHIs, representing all the key pteridophyte lineages, demonstrated that 19 of them were type I enzymes and that five exhibited some type II activity due to an amino acid mutation. Two pteridophyte chalcone synthases (CHSs) were also characterized, and a type IV CHI (CHIL) was demonstrated to interact physically with CHSs and CHI, and to increase CHS activity by decreasing derailment products, thus enhancing flavonoid production. These findings suggest that the emergence of type I CHIs may have coincided with the divergence of the pteridophytes. This study deepens our understanding of the molecular mechanism of CHIL as an enhancer in the flavonoid biosynthesis pathway.


Assuntos
Evolução Molecular , Gleiquênias/genética , Liases Intramoleculares/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Gleiquênias/enzimologia , Liases Intramoleculares/química , Liases Intramoleculares/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alinhamento de Sequência
6.
BMC Plant Biol ; 19(1): 497, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31726984

RESUMO

BACKGROUND: The basic helix-loop-helix (bHLH) transcription factors (TFs), as one of the largest families of TFs, play important roles in the regulation of many secondary metabolites including flavonoids. Their involvement in flavonoids synthesis is well established in vascular plants, but not as yet in the bryophytes. In liverworts, both bisbibenzyls and flavonoids are derived through the phenylpropanoids pathway and share several upstream enzymes. RESULTS: In this study, we cloned and characterized the function of PabHLH1, a bHLH family protein encoded by the liverworts species Plagiochasma appendiculatum. PabHLH1 is phylogenetically related to the IIIf subfamily bHLHs involved in flavonoids biosynthesis. A transient expression experiment showed that PabHLH1 is deposited in the nucleus and cytoplasm, while the yeast one hybrid assay showed that it has transactivational activity. When PabHLH1 was overexpressed in P. appendiculatum thallus, a positive correlation was established between the content of bibenzyls and flavonoids and the transcriptional abundance of corresponding genes involved in the biosynthesis pathway of these compounds. The heterologous expression of PabHLH1 in Arabidopsis thaliana resulted in the activation of flavonoids and anthocyanins synthesis, involving the up-regulation of structural genes acting both early and late in the flavonoids synthesis pathway. The transcription level of PabHLH1 in P. appendiculatum thallus responded positively to stress induced by either exposure to UV radiation or treatment with salicylic acid. CONCLUSION: PabHLH1 was involved in the regulation of the biosynthesis of flavonoids as well as bibenzyls in liverworts and stimulated the accumulation of the flavonols and anthocyanins in Arabidopsis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Bibenzilas/metabolismo , Flavonoides/metabolismo , Hepatófitas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Hepatófitas/metabolismo , Proteínas de Plantas/genética
7.
Plant Physiol Biochem ; 136: 169-177, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30685696

RESUMO

Caffeoyl Coenzyme A 3-O-methyltransferases (CCoAOMTs) catalyze the transfer of a methyl group from S-adenosylmethionine (SAM) to a hydroxyl moiety. CCoAOMTs are important for the synthesis of lignin, which provides much of the rigidity required by tracheophytes to enable the long distance transport of water. So far, no CCoAOMTs has been characterized from the ancient tracheophytes ferns. Here, two genes, each encoding a CCoAOMT (and hence denoted PaCCoAOMT1 and PaCCoAOMT2), were isolated from the fern species Polypodiodes amoena. Sequence comparisons confirmed that the product of each gene resembled enzymes known to be associated with lignin synthesis in higher plants. When either of the genes was heterologously expressed in E. coli, the resulting recombinant protein was able to methylate caffeoyl CoA, along with a number of phenylpropanoids, flavones and flavonols containing two vicinal hydroxyl groups. Their in vitro conversion rate when presented with either caffeoyl CoA or certain flavonoids as substrate was comparable with that of the Medicago sativa MsCCoAOMT. Their constitutive expression in Arabidopsis thaliana boosted the plants' lignin content, but did not affect that of methylated flavonols, indicating that both PaCCoAOMTs contributed to lignin synthesis and that neither was able to methylate flavonols in planta. The transient expression of a PaCCoAOMT-GFP fusion gene in tobacco demonstrated that in planta, PaCCoAOMTs are likely directed to the cytoplasm.


Assuntos
Metiltransferases/isolamento & purificação , Proteínas de Plantas/isolamento & purificação , Polypodiaceae/enzimologia , Arabidopsis , Flavonóis/metabolismo , Genes de Plantas/genética , Cinética , Lignina/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Metiltransferases/fisiologia , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Polypodiaceae/genética , Polypodiaceae/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...