Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37905186

RESUMO

Background: Microglia are closely linked to Alzheimer's disease (AD) many years ago; however, the pathological mechanisms of AD remain unclear. The purpose of this study was to determine whether leptin affected microglia in the hippocampus of young and aged male APP/PS1 mice. Objective: In a transgenic model of AD, we investigated the association between intraperitoneal injection of leptin and microglia. Methods: We intraperitoneal injection of leptin (1mg/kg) every day for one week and analyzed inflammatory markers in microglia in the hippocampus of adult (6 months) and aged (12 months) APP/PS1 mice. Results: In all leptin treatment group, the brain Aß levels were decrease. We found increased levels of IL-1ß, IL-6 and microglial activation in the hippocampus of adult mice. Using aged mice as an experimental model for chronic neuroinflammation and leptin resistance, the number of Iba-1+ microglia and the levels of IL-1ß/IL-6 in the hippocampus were greatly increased as compared to the adult. But between the leptin treatment and un-treatment, there were no difference. Conclusion: Leptin signaling would regulate the activation of microglia and the release of inflammatory factors, but it is not the only underlying mechanism in the neuroprotective effects of AD pathogenesis.

2.
Int J Biol Macromol ; 253(Pt 2): 126730, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37678699

RESUMO

Hydrogels are attractive materials with structures and functional properties similar to biological tissues and widely used in biomedical engineering. However, traditional synthetic hydrogels possess poor mechanical strength, and their applications are limited. Herein, a multidimensional material design method is developed; it includes the in situ gelation of silk fabric and nacre-inspired layer-by-layer assembly, which is used to prepare silk fibroin (SF) hydrogels. The in situ gelation method of silk fabric introduces a directionally ordered fabric network in a silk substrate, considerably enhancing the strength of hydrogels. Based on the nacre structure, the layer-by-layer assembly method enables silk hydrogels to break through the size limit and increase the thickness, realizing the longitudinal extension of the hydrogels. The application of the combined biomineralization and hot pressing method can effectively reduce interface defects and improve the interaction between organic and inorganic interfaces. The multidimensional material design method helps increase the strength (287.78 MPa), toughness (18.43 MJ m-3), and fracture energy (50.58 kJ m-2) of SF hydrogels; these hydrogels can weigh 2000 times their own weight. Therefore, SF hydrogels designed using the aforementioned combined method can realize the combination of strength and toughness and be used in biological tissue engineering and structural materials.


Assuntos
Fibroínas , Nácar , Fibroínas/química , Hidrogéis/química , Biomineralização , Nanopartículas em Multicamadas , Seda/química
3.
Int J Biol Macromol ; 242(Pt 2): 124912, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37207750

RESUMO

Flexible supercapacitors are an important portable energy storage but suffer from low capacitance, inability to stretch, etc. Therefore, flexible supercapacitors must achieve higher capacitance, energy density, and mechanical robustness to expand the applications. Herein, a hydrogel electrode with excellent mechanical strength was created by simulating the collagen fiber network and proteoglycan in cartilage using silk nanofiber (SNF) network and polyvinyl alcohol (PVA). The Young's modulus and breaking strength of the hydrogel electrode increased by 205 % and 91 % compared with PVA hydrogel owing to the enhanced effect of the bionic structure, respectively, which are 1.22 MPa and 1.3 MPa. The fracture energy and fatigue threshold reached 1813.5 J/m2 and 1585.2 J/m2, respectively. The SNF network effectively connected carbon nanotubes (CNTs) and polypyrrole (PPy) in series, affording a capacitance of 13.62 F/cm2 and energy density of 1.2098 mWh/cm2. This capacitance is the highest among currently reported PVA hydrogel capacitors, which can maintain >95.2 % after 3000 charge-discharge cycles. This capacitance Notably, the cartilage-like structure endowed the supercapacitor with high resilience; thus, the capacitance remained >92.1 % under 150 % deformation and >93.35 % after repeated stretching (3000 times), which was far superior to that of other PVA-based supercapacitors. Overall, this effective bionic strategy can endow supercapacitors with ultrahigh capacitance and effectively ensure the mechanical reliability of flexible supercapacitors, which will help expand the applications of supercapacitors.


Assuntos
Nanofibras , Nanotubos de Carbono , Hidrogéis , Polímeros , Reprodutibilidade dos Testes , Pirróis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...