Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genet Mol Res ; 14(4): 14587-96, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26600518

RESUMO

BAK1 is a co-receptor of BRI1 in early signaling pathways mediated by brassinosteroids (BRs) and is thought to play a major role in plant growth and development. As the role of BAK1 has not yet been fully elucidated then further research is required to explore its potential for use in genetic modification to improve crops. In this study, three BAK1 genes from the amphidiploid species Brassica rapa were isolated and their kinase functions were predicted following DNA sequence analysis. A bioinformatic analysis revealed that two genes, BrBAK1-1 and BrBAK1-8, shared a conserved kinase domain and 5 tandem leucine-rich repeats (LRRs) that are characteristic of a BAK1 receptor for BR perception, whereas the third gene, BrBAK1-3, was deficient for a signal peptide, but had 4 leucine zippers and 3 leucine-rich repeats (LRRs) in an extracellular domain. All three BrBAK1 kinases localized on the cellular membrane. Ectopic expression of each BrBAK1 gene in BR-insensitive (bri1-5 mutant) Arabidopsis plants indicated that BrBAK1-1 and BrBAK1-8 were functional homologues of AtBAK1 based on the rescue of growth in the bri1-5 mutant. Overexpression of BrBAK1-3 caused a severe dwarf phenotype resembling the phenotype of null BRI1 alleles. The results here suggest there are significant differences among the three BrBAK1 kinases for their effects on plant architecture. This conclusion has important implications for genetic modification of B. rapa.


Assuntos
Proteínas de Arabidopsis/genética , Brassica rapa/genética , Proteínas Serina-Treonina Quinases/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/biossíntese , Brassica rapa/anatomia & histologia , Brassica rapa/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Mutação , Fenótipo , Fosforilação , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/biossíntese , Transdução de Sinais
2.
Genet Mol Res ; 12(4): 5916-25, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24338385

RESUMO

Saccharum spontaneum is the most variable wild relative of sugarcane with potential for use in sugarcane improvement programs. In order to help preserve and exploit this species, 152 accessions from eight major geographical regions in China, including Hainan, Guangdong, Guangxi, Yunnan, Sichuan, Guizhou, Fujian, and Jiangxi provinces, were investigated by analyzing 20 simple sequence repeats (SSRs), including 11 genomic SSRs (gSSRs) and nine SSRs developed from expressed sequence tags (EST-SSRs). A total of 454 alleles were generated by the 20 SSRs, with 295 and 159 alleles detected by gSSRs and EST-SSRs respectively. The Mantel test showed significant correlation between genetic matrixes among the studied accessions revealed by gSSRs versus EST-SSRs, although the average polymorphism of EST-SSRs (17.7) was much lower than that of gSSRs (26.8). Among the eight provinces, collections from Guizhou were the most diverse and those from Guangdong were the most distinct. Clustering analysis and principal component analysis accordantly classified the accessions into four groups, which were "Southwest group", "Hainan group", "Guangdong group", and "Guangxi group", based on the geographical origin of the major accessions in each group, demonstrating that geographical factors play an important role in the pattern of genetic structure of Chinese S. spontaneum. As two (Guizhou and Yunnan) of the three provinces with highest genetic diversity are located in southwest China, we concluded that southwest China is the region with the highest genetic diversity of S. spontaneum.


Assuntos
Genes de Plantas , Repetições de Microssatélites , Polimorfismo Genético , Saccharum/genética , Alelos , China , Técnicas de Genotipagem , Modelos Genéticos , Filogenia , Filogeografia , Análise de Componente Principal , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA