Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 258: 121761, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38749183

RESUMO

Anthropogenic activities significantly impact the elemental cycles in aquatic ecosystems, with the N-cycling playing a critical role in potential nutrient turnover and substance cycling. We hypothesized that measures to prevent COVID-19 transmission profoundly altered the nitrogen cycle in riverine ecosystems. To investigate this, we re-analyzed metagenomic data and identified 60 N-cycling genes and 21 host metagenomes from four urban reaches (one upstream city, Wuhan, and two downstream cities) along the Yangtze River. Our analyses revealed a marked decrease in the abundance of bacterial ammonia monooxygenase genes, as well as in the host, ammonia-oxidizing autotrophic Nitrosomonas, followed by a substantial recovery post-pandemic. We posited that discharge of sodium hypochlorite (NaOCl) disinfectant may be a primary factor in the reduction of N-cycling process. To test this hypothesis, we exposed pure cultures of Nitrosomonas europaea to NaOCl to explore the microbial stress response. Results indicated that NaOCl exposure rapidly compromised the cell structure and inhibited ammonia oxidation of N. europaea, likely due to oxidative stress damage and reduced expression of nitrogen metabolism-related ammonia monooxygenase. Using the functional tagging technique, we determined that NaOCl directly destroyed the ammonia monooxygenase protein and DNA structure. This study highlights the negative impacts of chlorine disinfectants on the function of aquatic ecosystems and elucidates potential mechanisms of action.


Assuntos
Amônia , COVID-19 , Desinfetantes , Oxirredução , Amônia/metabolismo , Desinfetantes/farmacologia , Hipoclorito de Sódio/farmacologia , Ecossistema , Ciclo do Nitrogênio , Nitrosomonas europaea/metabolismo , Nitrosomonas europaea/efeitos dos fármacos , SARS-CoV-2 , Rios
2.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38365247

RESUMO

Bacterial communities are intricate ecosystems in which various members interact, compete for resources, and influence each other's growth. Antibiotics intensify this complexity, posing challenges in maintaining biodiversity. In this study, we delved into the behavior of kin bacterial communities when subjected to antibiotic perturbations, with a particular focus on how interspecific interactions shape these responses. We hypothesized that social cheating-where resistant strains shield both themselves and neighboring cheaters-obstructed coexistence, especially when kin bacteria exhibited varied growth rates and antibiotic sensitivities. To explore potential pathways to coexistence, we incorporated a third bacterial member, anticipating a shift in the dynamics of community coexistence. Simulations and experimental bacterial communities confirmed our predictions, emphasizing the pivotal role of interspecific competition in promoting coexistence under antibiotic interference. These insights are crucial for understanding bacterial ecosystem stability, interpreting drug-microbiome interactions, and predicting bacterial community adaptations to environmental changes.


Assuntos
Ecossistema , Microbiota , Biodiversidade , Antibacterianos/farmacologia , Ecologia , Proliferação de Células
3.
Appl Environ Microbiol ; 89(12): e0166223, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38047646

RESUMO

IMPORTANCE: Antibiotics can induce dose-dependent hormetic effects on bacterial cell proliferation, i.e., low-dose stimulation and high-dose inhibition. However, the underlying molecular basis has yet to be clarified. Here, we showed that sulfonamides play dual roles as a weapon and signal against Comamonas testosteroni that can modulate cell physiology and phenotype. Subsequently, through investigating the hormesis mechanism, we proposed a comprehensive regulatory pathway for the hormetic effects of Comamonas testosteroni low-level sulfonamides and determined the generality of the observed regulatory model in the Comamonadaceae family. Considering the prevalence of Comamonadaceae in human guts and environmental ecosystems, we provide critical insights into the health and ecological effects of antibiotics.


Assuntos
Hormese , Sulfonamidas , Humanos , Sulfonamidas/farmacologia , Ecossistema , Percepção de Quorum , Sulfanilamida/farmacologia , Antibacterianos/farmacologia
4.
Ecotoxicol Environ Saf ; 265: 115526, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37769581

RESUMO

The minimally invasive biomarkers that can facilitate a rapid dose assessment are valuable for the early medical treatment when accidental or occupational radiation exposure happens. Our previous proteomic research identified one kind of circulating protein, Insulin-like Growth Factor Binding Protein 3 (IGFBP-3), which showed a significant increase after total body exposure of mice to carbon ions and X-rays. However, several critical issues such as the responses to diverse radiation, the origin and underlying mechanism in radiation response obstruct the utilization of circulating IGFBP-3 as a reliable radiation biomarker. In this study, mice were subjected to total or partial body irradiation with carbon ions, protons or X-rays, or treated with chloroform as a comparison. The level of IGFBP-3 in serum and different organs were measured via Enzyme Linked Immunosorbent Assay (ELISA), Western blot (WB) and Immunohistochemistry (IHC). A significant increase of IGFBP-3 was discovered in serum and liver tissue post-irradiation with three kinds of radiation, but absent when challenged with chloroform. Likewise, a similar response was also observed in blood samples from patients receiving radiotherapy. Moreover, the effect of radiation on three main hepatic cells was investigated, the findings indicated that IGFBP-3 could be detected in the culture medium of Kupffer cells (MKC) alone and was elevated in cells and cultured medium of MKC post-irradiation. Additionally, we observed a co-expression effect between P53 and IGFBP-3 in liver tissues and MKC post-irradiation. Along with down-regulation of Trp53 by siRNA, the response of IGFBP-3 to radiation was attenuated. The present study demonstrated that circulating IGFBP-3 could be a promising universal biomarker for complex environmental radiation exposure, and the upregulation of IGFBP-3 is attributed to the MKC in a P53-dependent manner. Circulating IGFBP-3 assays would offer rapid, convenient and effective dose and toxicity assessment methods in occupational exposure or radiation disaster management.

5.
Water Res ; 230: 119575, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36623385

RESUMO

While dam construction supports social and economic development, changes in hydraulic conditions can also affect natural aquatic ecosystems, especially microbial ecosystems. The compositional and functional traits of multi-trophic microbiota can be altered by dam construction, which may result in changes in aquatic predator-prey interactions. To understand this process, we performed a large-scale sampling campaign in the urban reaches of the dam-impacted Yangtze River (1 995 km) and obtained 211 metagenomic datasets and water quality data. We first compared the compositional traits of planktonic microbial communities upstream, downstream, and in a dam reservoir. Results showed that Bacteroidetes (R-strategy) bacteria were more likely to survive upstream, whilst the reservoir and downstream regions were more conducive to the survival of K-strategy bacteria such as Actinobacteria. Eukaryotic predators tended to be enriched upstream, whilst phototrophs tended to be enriched in the reservoir and downstream regions. Based on bipartite networks, we inferred that the potential microbial predator-prey interactions gradually and significantly decreased from upstream to the downstream and dam regions, affecting 56% of keystone microbial species. Remarkably, functional analysis showed that the abundance of the photosynthetic gene psbO was higher in the reservoir and downstream regions, whilst the abundance of the KEGG carbohydrate metabolic pathway was higher upstream. These results indicate that dam construction in the Yangtze River induced planktonic microbial ecosystem transformation from detritus-based food webs to autotroph-based food webs.


Assuntos
Microbiota , Plâncton , Ecossistema , Rios/microbiologia , Cadeia Alimentar , Bacteroidetes , China
6.
ACS Nano ; 16(10): 15681-15704, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36121680

RESUMO

The electrochemical carbon dioxide reduction reaction (CO2RR) is a promising method to realize carbon recycling and sustainable development because of its mild reaction conditions and capability to utilize the electric power generated by renewable energy such as solar, wind, or tidal energy to produce high-value-added liquid fuels and chemicals. However, it is still a great challenge to deeply understand the reaction mechanism of CO2RRs involving multiple chemical processes and multiple products due to the complexity of the traditional catalyst's surface. Organic ligand-protected metal nanoclusters (NCs) with accurate compositions and definite atom packing structures show advantages for revealing the reaction mechanism of CO2RRs. This Review focuses on the recent progress in CO2RRs catalyzed by atomically precise metal NCs, including gold, copper, and silver NCs. Particularly, the influences of charge, ligand, surface structure, doping of Au NCs, and binders on the CO2RR are discussed in detail. Meanwhile the reaction mechanisms of CO2RRs including the active sites and the key reaction intermediates are also discussed. It is expected that progress in this research area could promote the development of metal NCs and CO2RRs.

7.
Front Microbiol ; 13: 874702, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663879

RESUMO

Although proton irradiation is ubiquitous in outer space as well as in the treatment of human diseases, its effects remain largely unclear. This work aimed to investigate and compare the composition of gut microbiota composition of mice in different species exposed to high-dose radiation. Male Balb/c mice and C57BL/6J mice were irradiated at a high dose (5Gy). Fecal specimens before and after irradiation were subjected to high-throughput sequencing (HTS) for the amplification of 16S rRNA gene sequences. We observed substantial changes in gut microbial composition among mice irradiated at high doses compared to non-irradiated controls. The changes included both the alpha and beta diversities. Furthermore, there were 11 distinct alterations in the irradiation group compared to the non-radiation control, including the families Muribaculaceae, Ruminococcaceae, Lactobacillus, Lachnospiraceae_NK4A136, Bacteroides, Alistipes, Clostridiales, Muribaculum, and Alloprevotella. Such alterations in the gut microbiome were accompanied by alterations in metabolite abundances, while at the metabolic level, 32 metabolites were likely to be potential biomarkers. Some alterations may have a positive effect on the repair of intestinal damage. Simultaneously, metabolites were predicted to involve multiple signal pathways, such as Urea Cycle, Ammonia Recycling, Alpha Linolenic Acid and Linoleic Acid Metabolism, Ketone Body Metabolism, Aspartate Metabolism, Phenylacetate Metabolism, Malate-Aspartate Shuttle, Arginine and Proline Metabolism and Carnitine Synthesis. Metabolites produced by proton irradiation in the microbial region play a positive role in repairing damage, making this area worthy of further experimental exploration. The present work offers an analytical and theoretical foundation to investigate how proton radiation affects the treatment of human diseases and identifies potential biomarkers to address the adverse effects of radiation. Importance: The space radiation environment is extremely complex, protons radiation is still the main component of space radiation and play an important role in space radiation. We proposed for the first time to compare the feces of Balb/c and C57BL/6J mice to study the changes of intestinal flora before and after proton irradiation. However, the effect of proton irradiation on the gut microbiome of both types of mice has not been previously demonstrated. After proton irradiation in two kinds of mice, we found that the characteristics of intestinal microbiome were related to the repair of intestinal injury, and some metabolites played a positive role in the repair of intestinal injury.

8.
ISME Commun ; 2(1): 84, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37938733

RESUMO

During the COVID-19 outbreak in Wuhan, large amounts of anti-coronavirus chemicals, such as antiviral drugs and disinfectants were discharged into the surrounding aquatic ecosystem, causing potential ecological damage. Here, we investigated plankton in the Wuhan reaches of the Yangtze River, before, during, and after COVID-19, with the river reaches of three adjacent cities sampled for comparison. During the COVID-19, planktonic microbial density declined significantly. Correspondingly, the eukaryotic and prokaryotic community compositions and functions shifted markedly, with increasing abundance of chlorine-resistant organisms. Abundance of antibiotic resistance genes, virulence factor genes, and bacteria containing both genes increased by 2.3-, 2.7-, and 7.9-fold, respectively, compared to other periods. After COVID-19, all measured plankton community compositional and functional traits recovered in the Yangtze River.

9.
Front Public Health ; 9: 759236, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917576

RESUMO

Proton radiation (PR) and microgravity (µG) are two key factors that impact living things in space. This study aimed to explore the combined effects of PR and simulated µG (SµG) on bone function. Mouse embryo osteoblast precursor cells (MC3T3-E1) were irradiated with proton beams and immediately treated with SµG for 2 days using a three-dimensional clinostat. All samples were subjected to cell viability, alkaline phosphatase (ALP) activity and transcriptome assays. The results showed that cell viability decreased with increasing doses of PR. The peak ALP activity after PR or SµG alone was lower than that obtained with the non-treatment control. No difference in cell viability or ALP activity was found between 1 Gy PR combined with SµG (PR-SµG) and PR alone. However, 4 Gy PR-SµG resulted in decreased cell viability and ALP activity compared with those obtained with PR alone. Furthermore, Gene Ontology analysis revealed the same trend. These results revealed that PR-SµG may lead to reductions in the proliferation and differentiation capacities of cells in a dose-dependent manner. Our data provide new insights into bone-related hazards caused by multiple factors, such as PR and µG, in the space environment.


Assuntos
Ausência de Peso , Animais , Diferenciação Celular , Sobrevivência Celular , Camundongos , Osteoblastos , Prótons
10.
Environ Res ; 199: 111349, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34019892

RESUMO

Wastewater treatment plant (WWTP) upgrades can reduce both nutrient and micropollutant emissions into receiving rivers, thus modifying the composition and function of biological communities. However, how microbial communities vary and whether they can be restored to levels found in less-polluted rivers remains uncertain. Aquatic biofilms are sensitive to environmental change and respond rapidly to bottom-up pressure. Thus, we used 12 flumes configured in three experimental treatments to mimic the dynamic processes of biofilm microbial communities occurring in a wastewater-receiving river following WWTP upgrade, with rivers containing two levels of nutrients and micropollutants used as references. We compared the biofilm microbial biomass, carbon source utilization, and community composition among the three "blocks". Results showed that the metabolic patterns of the carbon sources and composition of the biofilm bacterial communities in the flumes mimicking a receiving river with WWTP upgrade recovered over time to those mimicking a less-disturbed river. The restoration of potential carboxylic acid-consuming denitrifying bacteria (i.e., Zoogloea, Comamonas, Dechloromonas, and Acinetobacter) likely played a significant role in this process. Combining quantitative analysis of the denitrification genes nirS and nosZ, we confirmed that the denitrification function of the river biofilms recovered after WWTP upgrade, consistent with our previous field investigation.


Assuntos
Rios , Purificação da Água , Bactérias/genética , Biofilmes , Águas Residuárias/análise
11.
Antioxid Redox Signal ; 35(8): 618-641, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33906428

RESUMO

Aims: This study aims to explore the efficacy of punicalagin (PG) on diabetic cardiomyopathy (DCM), with a specific focus on the mechanisms underlying the effects of PG on mitochondrial fusion/fission dynamics. Results: Cardiac structural and functional abnormalities were ameliorated in diabetic rats receiving PG administration as evidenced by increased ejection fraction, and attenuated myocardial fibrosis and hypertrophy. PG enhanced mitochondrial function and inhibited mitochondria-derived oxidative stress by promoting Opa1-mediated mitochondrial fusion. The benefits of PG could be abrogated by knockdown of Opa1 in vivo and in vitro. Inhibitor screening and chromatin immunoprecipitation analysis showed that Stat3 directly regulated the transcriptional expression of Opa1 by binding to its promoter and was responsible for PG-induced Opa1-mediated mitochondrial fusion. Moreover, pharmmapper screening and molecular docking studies revealed that PG embedded into the activity pocket of PTP1B and inhibited the activity of PTP1B. Overexpression of PTP1B blocked the promoting effect of PG on Stat3 phosphorylation and Opa1-mediated mitochondrial fusion, whereas knockdown of PTP1B mimicked the benefits of PG in high-glucose-treated cardiomyocytes. Innovation: Our study is the first to identify PG as a novel mitochondrial fusion promoter against hyperglycemia-induced mitochondrial oxidative injury and cardiomyopathy by upregulating Opa1 via regulating PTP1B-Stat3 pathway. Conclusion: PG protects against DCM by promoting Opa1-mediated mitochondrial fusion, a process in which PG interacts with PTP1B and inhibits its activity, which in turn increases Stat3 phosphorylation and then enhances the transcriptional expression of Opa1. These results suggest that PG might be a promising new therapeutic approach against diabetic cardiac complication. Antioxid. Redox Signal. 35, 618-641.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/genética , GTP Fosfo-Hidrolases/metabolismo , Taninos Hidrolisáveis , Dinâmica Mitocondrial , Simulação de Acoplamento Molecular , Ratos
12.
Chem Soc Rev ; 50(9): 5590-5630, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33690780

RESUMO

Catalytic non-oxidative direct dehydrogenation of light alkanes serves as an effective reinforcement to selectively produce the corresponding olefins, and the heterogeneous metals and metal oxides, not limited to the commercially used Pt- and Cr-based catalysts, are widely investigated to enhance the efficiency. In this review, we outline the progress of these dehydrogenation catalysts that have been mainly developed in the past five years. For different classes of the most-promising catalysts in the selective dehydrogenation of ethane-to-ethylene and propane-to-propylene, their syntheses, structural information, catalytic properties and mechanisms are comparatively summarized.

13.
J Environ Sci (China) ; 101: 27-35, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33334522

RESUMO

Virulence factors (VFs) confer upon pathogens the ability to cause various types of damage or diseases. Wastewater treatment plants (WWTPs) are important point sources for the emission of pathogens and VFs into receiving rivers. Conventional WWTP upgrades are often implemented to improve the water quality of receiving ecosystems. However, knowledge on the pathogens, VFs, and health risks to receiving aquatic ecosystems after upgrade remains limited. In this study, we investigated detailed pathogenic information, including taxa, pathogenicity, and health risk, in two wastewater-dominant rivers after WWTP upgrade. Using 16S rRNA gene sequencing, we screened 14 potential pathogens in water and epilithic biofilm samples, though they were significantly more enriched in the biofilms. Combining 16S rRNA and metagenomic sequencing data, we identified Pseudomonas and Aeromonas as the dominant pathogenic taxa carrying functional VFs (e.g., mobility and offensive) in the epilithic biofilm. Moreover, strong pathogen-specific VF-host co-occurrence events were observed in the epilithic biofilm samples, indicating the importance of biofilms as reservoirs and vehicles for VFs. Further, we demonstrated that mobility VF is crucial for biofilm formation and pathogens in biofilm carrying offensive VF may be highly invasive. Quantification and health risk assessment suggested that the skin contact risk of P. aeruginosa carrying VFs was higher than the acceptable probability of 10-4 in both water and epilithic biofilm samples, which may threaten ecological and human health.


Assuntos
Rios , Águas Residuárias , Biofilmes , Ecossistema , Humanos , RNA Ribossômico 16S/genética , Fatores de Virulência
14.
iScience ; 23(5): 101096, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32422590

RESUMO

Chitin, a long-chain polymer of N-acetyl-D-glucosamine (NAG) and the most abundant natural nitrogen-containing organic material in the world, is far under-utilized than other biomass resources. Herein, we demonstrate a highly efficient deoxygenation process to convert chitin monomer, i.e., NAG, into various amines, which are the ubiquitous platform chemicals in chemical industry. In the presence of H2 and Ru/C catalyst, the oxygen atoms in the glucosamine molecules are removed in the form of H2O and/or CO/CO2, whereas CO is hydrogenated to CH4. By optimizing the reaction conditions, ∼50% yield of various amines was obtained via the selective deoxygenation of NAG. The reaction mechanism has been proposed. These findings not only promote shell biorefinery in green chemistry and fishery industry but also provide chemicals for material science, resulting in expanding cooperation in new areas such as clean energy, energy conservation, environment protection, and infrastructure.

15.
Environ Pollut ; 263(Pt A): 114478, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32283459

RESUMO

Currently, wastewater treatment plant (WWTP) upgrades have been implemented in various countries to improve the water quality of the receiving ecosystems and protect aquatic species from potential deleterious effects. The impact of WWTP upgrades on biological communities and functions in receiving waters is a fundamental issue that remains largely unaddressed, especially for microbial communities. Here, we selected two wastewater-dominant rivers in Beijing (China) as study sites, i.e., one river receiving water from an upgraded WWTP to explore the impacts of upgrade on aquatic ecosystems and another river receiving water from a previously upgraded WWTP as a reference. After a five-year investigation, we found that WWTP upgrade significantly decreased total organic nitrogen (N) in the receiving river. As a biological response, N-metabolism-related bacterioplankton are accordingly altered in composition and tend to intensively interact according to the network analysis. Metagenomic analysis based on the N-cycling genes and metagenomic-assembled genomes revealed that WWTP upgrade decreased the abundance of nitrifying bacteria but increased that of denitrifying and dissimilatory nitrate reduction to ammonium (DNRA) bacteria in the receiving river, according to their marker gene abundances. After calculation of the ratios between DNRA and denitrifying bacteria and quantification of genes/bacteria related to ammonium cycling, we deduced the changes in N-metabolism-related bacteria are likely an attempt to provide enough bioavailable N for plankton growth as conservation of ammonium was enhanced in receiving river after WWTP upgrade.


Assuntos
Rios , Águas Residuárias , Pequim , China , Ecossistema , Nitrogênio/análise
16.
Environ Sci Technol ; 54(8): 5197-5206, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32207614

RESUMO

Designed for retaining suspended particles, rapid sand filters (RSFs) are widely used in drinking water treatment. There is increasing evidence that microbial processes within RSFs contribute to the transformation and removal of organic carbon, nitrogen, and metal pollutants. Here, we linked microbial composition and functional profiles with the treatment performance of 12 different RSFs that significantly removed influent ammonium and manganese (Mn). Metagenomic analyses showed that chemoautotrophic or methanotrophic bacteria were prevalent in the groundwater filters, and chemoheterotrophic bacteria encoding more carbohydrate- and xenobiotic-metabolizing genes were more abundant in the surface water filters. Approximately 92% of ammonium was transformed into nitrate, with a critical contribution from comammox Nitrospira. The composition of comammox amoA differed between groundwater and surface water filters, with clade A dominating groundwater filters (78.0 ± 12.0%) and clade B dominating surface water filters (91.9 ± 8.9%). Further, we identified six bacterial genera encoding known Mn(II)-oxidizing genes in the RSFs, with Pseudomonas accounting for 71.1%. These Mn(II)-oxidizing bacteria might promote Mn(II) oxidation and thus increase the removal of influent Mn. Overall, our study gave a comprehensive investigation of microbiome in RSFs and highlighted the roles of comammox and Mn(II)-oxidizing bacteria in water purification.


Assuntos
Água Subterrânea , Microbiota , Purificação da Água , Filtração , Metagenômica , Oxirredução , Areia
17.
Huan Jing Ke Xue ; 40(8): 3604-3611, 2019 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854766

RESUMO

Rapid sand filter (RSF) is widely used in drinking water treatment plants. Rapid filtration is always considered a physicochemical process, but the effect of the microorganisms that attach to the filter media remain inadequately investigated. In order to understand the composition and functional characteristics of microbial communities in RSFs, influent water, effluent water, and filter materials from eleven RSFs in eight Chinese cities were sampled and analyzed. After filtration, dissolved organic carbon (DOC) showed a slight but significant removal due to the growth of heterotrophic microbes. The activity of ammonia-oxidizing microbes and nitrite-oxidizing microbes promoted a significant decrease in ammonia nitrogen (NH4+-N) and a significant increase in nitrate nitrogen (NO3--N) in water. No significant changes in total nitrogen (TN) were observed, indicating that denitrification and anammox were weak in the RSFs. The composition and function of the microbial communities of RSFs were assessed using metagenomic methods. Genera in the top 10% with respect to relative abundance (14 genera in total) were identified as the dominant genera, including the two ammonia-oxidizing bacteria Nitrospira and Nitrosomonas. Functional gene information for the dominant genera was also extracted for analysis. The dominant genera exhibited higher relative abundances of carbohydrate, nitrogen, sulfur, and xenobiotic metabolic pathways. Aeromonas had the highest relative abundance of carbohydrate metabolic genes, and Bradyrhizobium had the highest relative abundance of nitrogen, sulfur, and xenobiotics metabolic genes, indicating that these two genera play an important role in the transformation of substances in drinking water. Finally, the metabolic potential of the dominant genera on xenobiotics was evaluated, and the results showed that Bradyrhizobium, Sphingomonas, Methyloglobulus, Sphingopyxis, and Klebsiella were the key bacterial genera for the removal of micropollutants in RSFs.


Assuntos
Água Potável , Microbiota , Purificação da Água , Desnitrificação , Nitrogênio , Oxirredução , Areia , Microbiologia da Água
18.
Front Microbiol ; 9: 3152, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30622523

RESUMO

The fungal community interacts with the ambient environment and can be used as a bioindicator to reflect anthropogenic activities in aquatic ecosystems. Several studies have investigated the impact of anthropogenic activities on the fungal community and found that community diversity and composition are influenced by such activities. Here we combined chemical analysis of water properties and sequencing of fungal internal transcribed spacer regions to explore the relationship between water quality indices and fungal community diversity and composition in three river ecosystem areas along a gradient of anthropogenic disturbance (i.e., less-disturbed mountainous area, wastewater-discharge urban area, and pesticide and fertilizer used agricultural area). Results revealed that the level of anthropogenic activity was strongly correlated to water quality and mycoplankton community. The increase in organic carbon and nitrogen concentrations in water improved the relative abundance of Schizosaccharomyces, which could be used as a potential biomarker to reflect pollutant and nutrient discharge. We further applied a biofilm reactor using water from the three areas as influent to investigate the differences in fungal communities in the formed biofilms. Different community compositions were observed among the three areas, with the dominant fungal phyla in the biofilms found to be more sensitive to seasonal effects than those found in water. Finally, we determined whether the fungal community could recover following water quality restoration. Our biofilm reactor assay revealed that the recovery of fungal community would occur but need a long period of time. Thus, this study highlights the importance of preserving the original natural aquatic ecosystem.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...