Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Res Sq ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38883762

RESUMO

Apoptotic vesicles (apoVs) play a vital role in various pathological conditions; however, we have yet to fully understand their precise biological effects in rescuing impaired mesenchymal stem cells (MSCs) and regulating tissue homeostasis. Here, we proved that systemic infusion of bone marrow MSCs derived from wild-type (WT) mice effectively improved the osteopenia phenotype and hyperimmune state in ovariectomized (OVX) mice. Importantly, the WT MSCs rescued the impairment of OVX MSCs both in vivo and in vitro, whereas OVX MSCs did not show the same efficacy. Interestingly, treatment with apoVs derived from WT MSCs (WT apoVs) restored the impaired biological function of OVX MSCs and their ability to improve osteoporosis. This effect was not observed with OVX MSCs-derived apoVs (OVX apoVs) treatment. Mechanistically, the reduced miR-145a-5p expression hindered the osteogenic differentiation and immunomodulatory capacity of OVX MSCs by affecting the TGF-ß/Smad 2/3-Wnt/ß-catenin signaling axis, resulting in the development of osteoporosis. WT apoVs directly transferred miR-145a-5p to OVX MSCs, which were then reused to restore their impaired biological functions. Conversely, treatment with OVX apoVs did not produce significant effects due to their limited expression of miR-145a-5p. Overall, our findings unveil the remarkable potential of apoVs in rescuing the biological function and therapeutic capability of MSCs derived from individuals with diseases. This discovery offers a new avenue for exploring apoVs-based MSC engineering and expands the application scope of stem cell therapy, contributing to the maintenance of bone homeostasis through a previously unrecognized mechanism.

2.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612566

RESUMO

Rubisco large-subunit methyltransferase (LSMT), a SET-domain protein lysine methyltransferase, catalyzes the formation of trimethyl-lysine in the large subunit of Rubisco or in fructose-1,6-bisphosphate aldolases (FBAs). Rubisco and FBAs are both vital proteins involved in CO2 fixation in chloroplasts; however, the physiological effect of their trimethylation remains unknown. In Nannochloropsis oceanica, a homolog of LSMT (NoLSMT) is found. Phylogenetic analysis indicates that NoLSMT and other algae LSMTs are clustered in a basal position, suggesting that algal species are the origin of LSMT. As NoLSMT lacks the His-Ala/ProTrp triad, it is predicted to have FBAs as its substrate instead of Rubisco. The 18-20% reduced abundance of FBA methylation in NoLSMT-defective mutants further confirms this observation. Moreover, this gene (nolsmt) can be induced by low-CO2 conditions. Intriguingly, NoLSMT-knockout N. oceanica mutants exhibit a 9.7-13.8% increase in dry weight and enhanced growth, which is attributed to the alleviation of photoinhibition under high-light stress. This suggests that the elimination of FBA trimethylation facilitates carbon fixation under high-light stress conditions. These findings have implications in engineering carbon fixation to improve microalgae biomass production.


Assuntos
Aldeído Liases , Lisina , Ribulose-Bifosfato Carboxilase/genética , Biomassa , Dióxido de Carbono , Filogenia , Frutose-Bifosfato Aldolase , Histona-Lisina N-Metiltransferase , Cloroplastos/genética
3.
Plant Commun ; 5(3): 100773, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38007614

RESUMO

Epigenetic marks on histones and DNA, such as DNA methylation at N6-adenine (6mA), play crucial roles in gene expression and genome maintenance, but their deposition and function in microalgae remain largely uncharacterized. Here, we report a genome-wide 6mA map for the model industrial oleaginous microalga Nannochloropsis oceanica produced by single-molecule real-time sequencing. Found in 0.1% of adenines, 6mA sites are mostly enriched at the AGGYV motif, more abundant in transposons and 3' untranslated regions, and associated with active transcription. Moreover, 6mA gradually increases in abundance along the direction of gene transcription and shows special positional enrichment near splicing donor and transcription termination sites. Highly expressed genes tend to show greater 6mA abundance in the gene body than do poorly expressed genes, indicating a positive interaction between 6mA and general transcription factors. Furthermore, knockout of the putative 6mA methylase NO08G00280 by genome editing leads to changes in methylation patterns that are correlated with changes in the expression of molybdenum cofactor, sulfate transporter, glycosyl transferase, and lipase genes that underlie reductions in biomass and oil productivity. By contrast, knockout of the candidate demethylase NO06G02500 results in increased 6mA levels and reduced growth. Unraveling the epigenomic players and their roles in biomass productivity and lipid metabolism lays a foundation for epigenetic engineering of industrial microalgae.


Assuntos
Metilação de DNA , Epigenômica , Mapeamento Cromossômico , Adenina/metabolismo , Lipídeos
4.
JCI Insight ; 8(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37676738

RESUMO

Pyrin, a protein encoded by the MEFV gene, plays a vital role in innate immunity by sensing modifications in Rho GTPase and assembling the pyrin inflammasome, which in turn activates downstream immune responses. We identified a novel and de novo MEFV p.E583A dominant variant in 3 patients from the same family; the variant was distinct from the previously reported S242 and E244 sites. These patients exhibited a phenotype that diverged from those resulting from classical MEFV gene mutations, characterized by the absence of recurrent fever but the presence of recurrent chest and abdominal pain. Colchicine effectively controlled the phenotype, and the mutation was found to induce pyrin inflammasome assembly and activation in patients' peripheral blood mononuclear cells (PBMCs) and cell lines. Mechanistically, truncation experiments revealed that the E583A variant affected the autoinhibitory structure of pyrin. Our study offers insights into the mechanisms underlying pyrin inflammasome activation.


Assuntos
Inflamassomos , Leucócitos Mononucleares , Humanos , Pirina/genética , Pirina/metabolismo , Inflamassomos/metabolismo , Leucócitos Mononucleares/metabolismo , Mutação , Colchicina
5.
Diabetes ; 72(11): 1574-1596, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37579296

RESUMO

Thermogenic adipocytes have been extensively investigated because of their energy-dissipating property and therapeutic potential for obesity and diabetes. Besides serving as fuel sources, accumulating evidence suggests that intermediate metabolites play critical roles in multiple biological processes. However, their role in adipocyte differentiation and thermogenesis remains unexplored. Here, we report that human and mouse obesity is associated with marked downregulation of glutamine synthetase (Glul) expression and activity in thermogenic adipose tissues. Glul is robustly upregulated during brown adipocyte (BAC) differentiation and in brown adipose tissue (BAT) upon cold exposure and Cl316,243 stimulation. Further genetic, pharmacologic, or metabolic manipulations of Glul and glutamine levels reveal that glutamine cells autonomously stimulate BAC differentiation and function and BAT remodeling and improve systemic energy homeostasis in mice. Mechanistically, glutamine promotes transcriptional induction of adipogenic and thermogenic gene programs through histone modification-mediated chromatin remodeling. Among all the glutamine-regulated writer and eraser genes responsible for histone methylation and acetylation, only Prdm9, a histone lysine methyltransferase, is robustly induced during BAC differentiation. Importantly, Prdm9 inactivation by shRNA knockdown or a selective inhibitor attenuates glutamine-triggered adipogenic and thermogenic induction. Furthermore, Prdm9 gene transcription is regulated by glutamine through the recruitment of C/EBPb to its enhancer region. This work reveals glutamine as a novel activator of thermogenic adipocyte differentiation and uncovers an unexpected role of C/EBPb-Prdm9-mediated H3K4me3 and transcriptional reprogramming in adipocyte differentiation and thermogenesis.

6.
Clin Immunol ; 255: 109731, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37567492

RESUMO

NLRC4 gain-of-function variants are known to cause various autoinflammatory phenotypes, including familial cold autoinflammatory syndrome (FCAS4) and NLRC4 macrophage activation syndrome (NLRC4-MAS). However, to date, no study has linked NLRC4 gain-of-function variants to systemic lupus erythematosus (SLE). In this study, we identified a novel NLRC4 W655S variant in an SLE patient and her son, who had neonatal lupus complicated with macrophage activation syndrome. Our in vitro experiments demonstrated that the W655S NLRC4 increased ASC speck formation and mature IL-1ß secretion compared to the wild-type NLRC4. In addition, the patient had elevated levels of IL-1ß and IL-18 in both serum and PBMCs. RNA sequencing showed that NF-κB and interferon signaling pathways were significantly activated in the patient compared to healthy controls. Furthermore, gene set enrichment analysis revealed upregulation of NLRC4-related pathways in patient PBMCs. In conclusion, our study identified the NLRC4 W655S variant in a patient with SLE. This is the first report linking inflammasomopathy to monogenic SLE. Our findings suggest that inflammasome activation may be a critical driver in the pathogenicity of lupus, and autoinflammatory pathways may play important roles in the development of the disease.


Assuntos
Síndromes Periódicas Associadas à Criopirina , Inflamassomos , Lúpus Eritematoso Sistêmico , Síndrome de Ativação Macrofágica , Feminino , Humanos , Recém-Nascido , Proteínas de Ligação ao Cálcio/genética , Proteínas Adaptadoras de Sinalização CARD/genética , Mutação com Ganho de Função , Inflamassomos/genética , Inflamassomos/metabolismo , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Síndrome de Ativação Macrofágica/genética
7.
Nat Commun ; 14(1): 4257, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468484

RESUMO

Skeletal muscle and thermogenic adipose tissue are both critical for the maintenance of body temperature in mammals. However, whether these two tissues are interconnected to modulate thermogenesis and metabolic homeostasis in response to thermal stress remains inconclusive. Here, we report that human and mouse obesity is associated with elevated Musclin levels in both muscle and circulation. Intriguingly, muscle expression of Musclin is markedly increased or decreased when the male mice are housed in thermoneutral or chronic cool conditions, respectively. Beige fat is then identified as the primary site of Musclin action. Muscle-transgenic or AAV-mediated overexpression of Musclin attenuates beige fat thermogenesis, thereby exacerbating diet-induced obesity and metabolic disorders in male mice. Conversely, Musclin inactivation by muscle-specific ablation or neutralizing antibody treatment promotes beige fat thermogenesis and improves metabolic homeostasis in male mice. Mechanistically, Musclin binds to transferrin receptor 1 (Tfr1) and antagonizes Tfr1-mediated cAMP/PKA-dependent thermogenic induction in beige adipocytes. This work defines the temperature-sensitive myokine Musclin as a negative regulator of adipose thermogenesis that exacerbates the deterioration of metabolic health in obese male mice and thus provides a framework for the therapeutic targeting of this endocrine pathway.


Assuntos
Tecido Adiposo Bege , Tecido Adiposo Branco , Animais , Humanos , Masculino , Camundongos , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Branco/metabolismo , Homeostase , Mamíferos , Camundongos Endogâmicos C57BL , Músculos/metabolismo , Obesidade/metabolismo , Termogênese
8.
J Allergy Clin Immunol ; 152(5): 1292-1302, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37422272

RESUMO

BACKGROUND: Phospholipase C (PLC) γ1 is a critical enzyme regulating nuclear factor-κB (NF-κB), extracellular signal-related kinase, mitogen-activated protein kinase, and nuclear factor of activated T cells signaling pathways, yet germline PLCG1 mutation in human disease has not been reported. OBJECTIVE: We aimed to investigate the molecular pathogenesis of a PLCG1 activating variant in a patient with immune dysregulation. METHODS: Whole exome sequencing was used to identify the patient's pathogenic variants. Bulk RNA sequencing, single-cell RNA sequencing, quantitative PCR, cytometry by time of flight, immunoblotting, flow cytometry, luciferase assay, IP-One ELISA, calcium flux assay, and cytokine measurements in patient PBMCs and T cells and COS-7 and Jurkat cell lines were used to define inflammatory signatures and assess the impact of the PLCG1 variant on protein function and immune signaling. RESULTS: We identified a novel and de novo heterozygous PLCG1 variant, p.S1021F, in a patient presenting with early-onset immune dysregulation disease. We demonstrated that the S1021F variant is a gain-of-function variant, leading to increased inositol-1,4,5-trisphosphate production, intracellular Ca2+ release, and increased phosphorylation of extracellular signal-related kinase, p65, and p38. The transcriptome and protein expression at the single-cell level revealed exacerbated inflammatory responses in the patient's T cells and monocytes. The PLCG1 activating variant resulted in enhanced NF-κB and type II interferon pathways in T cells, and hyperactivated NF-κB and type I interferon pathways in monocytes. Treatment with either PLCγ1 inhibitor or Janus kinase inhibitor reversed the upregulated gene expression profile in vitro. CONCLUSIONS: Our study highlights the critical role of PLCγ1 in maintaining immune homeostasis. We illustrate immune dysregulation as a consequence of PLCγ1 activation and provide insight into therapeutic targeting of PLCγ1.


Assuntos
Mutação com Ganho de Função , NF-kappa B , Humanos , NF-kappa B/metabolismo , Transdução de Sinais , Proteínas Quinases Ativadas por Mitógeno/genética , Fosforilação , Fosfolipase C gama/genética
10.
Regen Biomater ; 10: rbad012, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36915712

RESUMO

The comprehensive recognition of communications between bone marrow mesenchymal stem cells (bm-MSCs) and macrophages in the peri-implant microenvironment is crucial for implantation prognosis. Our previous studies have clarified the indirect influence of Ti surface topography in the osteogenic differentiation of bm-MSCs through modulating macrophage polarization. However, cell communication is commutative and multi-directional. As the immune regulatory properties of MSCs have become increasingly prominent, whether bm-MSCs could also play an immunomodulatory role on macrophages under the influence of Ti surface topography is unclear. To further illuminate the communications between bm-MSCs and macrophages, the bm-MSCs inoculated on Ti with nanoporous topography were indirectly co-cultured with macrophages, and by blocking exosome secretion or extracting the purified exosomes to induce independently, we bidirectionally confirmed that under the influence of TiO2 nanoporous topography with 80-100 nm tube diameters, bm-MSCs can exert immunomodulatory effects through exosome-mediated paracrine actions and induce M1 polarization of macrophages, adversely affecting the osteogenic microenvironment around the implant. This finding provides a reference for the optimal design of the implant surface topography for inducing better bone regeneration.

11.
Int J Oral Sci ; 15(1): 7, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36646698

RESUMO

Severe muscle injury is hard to heal and always results in a poor prognosis. Recent studies found that extracellular vesicle-based therapy has promising prospects for regeneration medicine, however, whether extracellular vesicles have therapeutic effects on severe muscle injury is still unknown. Herein, we extracted apoptotic extracellular vesicles derived from mesenchymal stem cells (MSCs-ApoEVs) to treat cardiotoxin induced tibialis anterior (TA) injury and found that MSCs-ApoEVs promoted muscles regeneration and increased the proportion of multinucleated cells. Besides that, we also found that apoptosis was synchronized during myoblasts fusion and MSCs-ApoEVs promoted the apoptosis ratio as well as the fusion index of myoblasts. Furthermore, we revealed that MSCs-ApoEVs increased the relative level of creatine during myoblasts fusion, which was released via activated Pannexin 1 channel. Moreover, we also found that activated Pannexin 1 channel was highly expressed on the membrane of myoblasts-derived ApoEVs (Myo-ApoEVs) instead of apoptotic myoblasts, and creatine was the pivotal metabolite involved in myoblasts fusion. Collectively, our findings firstly revealed that MSCs-ApoEVs can promote muscle regeneration and elucidated that the new function of ApoEVs as passing inter-cell messages through releasing metabolites from activated Pannexin 1 channel, which will provide new evidence for extracellular vesicles-based therapy as well as improving the understanding of new functions of extracellular vesicles.


Assuntos
Conexinas , Creatina , Vesículas Extracelulares , Mioblastos , Creatina/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Regeneração , Conexinas/metabolismo
12.
Stem Cells ; 41(2): 184-199, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36520505

RESUMO

Macrophage polarization plays an important role in the progression of inflammation. Exosomes derived from stem cells are promising candidates for macrophage immunoregulation. However, how exosomes derived from periodontal ligament stem cells (PDLSCs) in an inflammatory environment influence macrophage polarization has yet to be fully elucidated. In this study, inflammatory PDLSCs were found to downregulate M2 macrophage polarization at the mRNA and protein levels in a Transwell coculture system of PDLSCs and THP-1-derived M0 macrophages. Furthermore, inflammatory PDLSC-derived exosomes shifted macrophages toward the M1 phenotype. The inhibition of inflammatory PDLSC-derived exosomes by GW4869 weakened inflammatory PDLSC-mediated M1 macrophage polarization. A miRNA microarray was used to determine the differential miRNAs shuttled by healthy and inflammatory PDLSC-derived exosomes. Compared with healthy exosomes, miR-143-3p was enriched in inflammatory PDLSC-derived exosomes, which targeted and inhibited the expression of PI3Kγ and promoted M1 macrophage polarization by suppressing PI3K/AKT signaling and activating NF-κB signaling, while an agonist of the PI3K pathway reversed this effect. Moreover, exosome-shuttled miR-143-3p from PDLSCs drove M1 macrophage polarization and aggravated periodontal inflammation in a mouse periodontitis model. In conclusion, these results demonstrate that inflammatory PDLSCs facilitate M1 macrophage polarization through the exosomal miR-143-3p-mediated regulation of PI3K/AKT/NF-κB signaling, providing a potential new target for periodontitis treatment.


Assuntos
Exossomos , MicroRNAs , Periodontite , Animais , Camundongos , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ligamento Periodontal , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco/metabolismo , Macrófagos/metabolismo , Exossomos/metabolismo , Periodontite/metabolismo , Inflamação/metabolismo
13.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-965908

RESUMO

Objective @#To investigate the effect of different decontamination methods, including photodynamic therapy, sandblasting and titanium curette, on titanium surface morphology and bacterial adhesion for the treatment of peri-implant disease. @*Methods@#Porphyromonas gingivalis (Pg) and Fusobacterium nucleatum (Fn) were inoculated on the surface of polished titanium specimens, and titanium specimen surfaces were treated with different decontamination methods after incubation. The titanium specimens were divided into a no-treatment control group, photodynamic group, sandblasting group and titanium curette group according to different decontamination methods. The changes in titanium surface roughness were observed by atomic force microscopy (AFM), and the remaining bacteria on the titanium surface were observed by scanning electron microscopy (SEM) and live/dead bacteria staining tests. After reinoculation of Pg and Fn, bacterial readhesion was observed on the surface of decontaminated titanium specimens. @*Results @#The AFM results showed that the surface roughness of the titanium curette group was significantly higher than that of the no-treatment control group, photodynamic group and sandblasting group (P<0.05), and there was no statistically significant difference between the no-treatment control group, photodynamic group and sandblasting group (P>0.05). The results of contact angle measurement showed that the surface contact angle of each treatment group was smaller than that of the no-treatment control group (P<0.05). The SEM results obtained after the titanium specimen surface was decontaminated showed that the number of bacteria on the no-treatment control group surface was higher and the bacteria were relatively concentrated. The bacteria on the surface of the photodynamic group, sandblasting group and titanium curette group were scattered and distributed in small numbers, and most bacteria on the surface of the photodynamic group were ruptured. The results of the live/dead bacteria staining experiment showed that the percentage of dead bacteria on the surface of the photodynamic group was significantly higher than that of the no-treatment control group, sandblasting group and titanium curette group (P<0.05). The remaining bacteria on the surface of the sandblasting group and titanium curette groups were mainly live bacteria. The remaining bacterial adhesion on the surface was significantly reduced for the sandblasting group compared to the no-treatment control group and the photodynamic and titanium curette groups (P<0.05). SEM and live/dead bacteria staining results of bacterial readhesion on the surface of titanium specimens showed that there was an aggregation of Pg on the surface of the titanium curette group, and its surface bacterial adhesion was significantly higher than that of the no-treatment control group, photodynamic group and sandblasting group. @*Conclusion @#In mechanical decontamination, sandblasting machines are a better option than photodynamic therapy and titanium curettes; however, sandblasting does not remove all bacterial contamination. For sterilization, photodynamic therapy is more effective than sandblasting and titanium curettes. A combination of sandblasting and photodynamic therapy methods for the treatment of peri-implant disease may be considered in clinical practice.

14.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 41(6): 635-640, 2023 Dec 01.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38597027

RESUMO

To keep or extract severe periodontitis damaged teeth is one of the controversial topics in the dentistry from ancient times to present. From different perspectives, professions, technologies, time, and economics, there may be different choices with unidentified consensus. Based on the author's own understanding, experience, literature review, and other aspects, this article proposes some exchange views on influencing factors, abandoning consideration, preserving possibility, and how to detect and prevent the development of lesions. The aim is to stimulate more thinking and accumulate clinical evidence-based data among peers, in order to facilitate cooperation and promote oral health.


Assuntos
Periodontite , Dente , Humanos , Consenso
15.
Sci Bull (Beijing) ; 67(7): 733-747, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36546138

RESUMO

Diabetes is caused by the interplay between genetics and environmental factors, tightly linked to lifestyle and dietary patterns. In this study, we explored the effectiveness of intermittent protein restriction (IPR) in diabetes control. IPR drastically reduced hyperglycemia in both streptozotocin-treated and leptin receptor-deficient db/db mouse models. IPR improved the number, proliferation, and function of ß cells in pancreatic islets. IPR reduced glucose production in the liver and elevated insulin signaling in the skeletal muscle. IPR elevated serum level of FGF21, and deletion of the Fgf21 gene in the liver abrogated the hypoglycemic effect of IPR without affecting ß cells. IPR caused less lipid accumulation and damage in the liver than that caused by continuous protein restriction in streptozotocin-treated mice. Single-cell RNA sequencing using mouse islets revealed that IPR reversed diabetes-associated ß cell reduction and immune cell accumulation. As IPR is not based on calorie restriction and is highly effective in glycemic control and ß cell protection, it has promising translational potential in the future.


Assuntos
Diabetes Mellitus Experimental , Ilhotas Pancreáticas , Camundongos , Animais , Diabetes Mellitus Experimental/metabolismo , Dieta com Restrição de Proteínas , Estreptozocina/metabolismo , Glucose/metabolismo , Homeostase
16.
Plant Physiol ; 190(3): 1658-1672, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36040196

RESUMO

Depending on their fatty acid (FA) chain length, triacylglycerols (TAGs) have distinct applications; thus, a feedstock with a genetically designed chain length is desirable to maximize process efficiency and product versatility. Here, ex vivo, in vitro, and in vivo profiling of the large set of type-2 diacylglycerol acyltransferases (NoDGAT2s) in the industrial oleaginous microalga Nannochloropsis oceanica revealed two endoplasmic reticulum-localized enzymes that can assemble medium-chain FAs (MCFAs) with 8-12 carbons into TAGs. Specifically, NoDGAT2D serves as a generalist that assembles C8-C18 FAs into TAG, whereas NoDGAT2H is a specialist that incorporates only MCFAs into TAG. Based on such specialization, stacking of NoDGAT2D with MCFA- or diacylglycerol-supplying enzymes or regulators, including rationally engineering Cuphea palustris acyl carrier protein thioesterase, Cocos nucifera lysophosphatidic acid acyltransferase, and Arabidopsis thaliana WRINKLED1, elevated the medium-chain triacylglycerol (MCT) share in total TAG 66-fold and MCT productivity 64.8-fold at the peak phase of oil production. Such functional specialization of NoDGAT2s in the chain length of substrates and products reveals a dimension of control in the cellular TAG profile, which can be exploited for producing designer oils in microalgae.


Assuntos
Ácidos Graxos , Estramenópilas , Ácidos Graxos/metabolismo , Diglicerídeos , Estramenópilas/genética , Estramenópilas/metabolismo , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Triglicerídeos/metabolismo
17.
J Exp Med ; 219(7)2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35652891

RESUMO

Pancreatic ß cell plasticity is the primary determinant of disease progression and remission of type 2 diabetes (T2D). However, the dynamic nature of ß cell adaptation remains elusive. Here, we establish a mouse model exhibiting the compensation-to-decompensation adaptation of ß cell function in response to increasing duration of high-fat diet (HFD) feeding. Comprehensive islet functional and transcriptome analyses reveal a dynamic orchestration of transcriptional networks featuring temporal alteration of chromatin remodeling. Interestingly, prediabetic dietary intervention completely rescues ß cell dysfunction, accompanied by a remarkable reversal of HFD-induced reprogramming of islet chromatin accessibility and transcriptome. Mechanistically, ATAC-based motif analysis identifies CTCF as the top candidate driving dietary intervention-induced preservation of ß cell function. CTCF expression is markedly decreased in ß cells from obese and diabetic mice and humans. Both dietary intervention and AAV-mediated restoration of CTCF expression ameliorate ß cell dysfunction ex vivo and in vivo, through transducing the lipid toxicity and inflammatory signals to transcriptional reprogramming of genes critical for ß cell glucose metabolism and stress response.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Células Secretoras de Insulina/metabolismo , Camundongos , Obesidade/genética , Obesidade/metabolismo
18.
J Periodontol ; 93(11): 1738-1751, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35499816

RESUMO

BACKGROUND: Periodontitis is caused by the imbalance of anti-bacteria immune response and excessive inflammation whereas macrophages play an important role in inflammation. Thus, it is critical for finding efficient anti-inflammatory strategies to alleviate periodontal inflammation and prevent bone destruction. Apoptosis of mesenchymal stem cells (MSCs) exerts immune silencing effects, however, using these effects to develop anti-inflammatory strategies remains unknown. In our study, we extracted apoptotic extracellular vesicles (ApoEVs) from bone marrow MSCs (BMMSCs) and found ApoEVs inhibited macrophages polarizing into proinflammatory condition via AMPK/SIRT1/NF-κB pathway. Besides that, we also found ApoEVs inhibited adjacent osteoclast formation by suppressing the secretion of TNF-α of proinflammatory macrophages. METHODS: BMMSCs derived ApoEVs were extracted by gradient centrifugation. Protein expression level and secreted cytokines of ApoEVs treated macrophages were examined by western blot and ELISA, respectively. Besides, the change of NF-κB pathway and related molecules were examined by immunofluorescence and western blot. The osteoclast formation under the different conditioned mediums from macrophages was measured by TRAP staining, MMP-9 expression, and pit assay. RESULTS: ApoEVs were extracted from staurosporine-induced apoptotic BMMSCs and were in sphere shapes whose diameters are between 100 and 1000 nm. ApoEVs could be phagocyted by macrophages and in turn reduce the expression of COX2 in proinflammatory macrophages. Besides that, ApoEVs suppressed the secretions of TNF-α and IL-6 while elevating the secretion of IL-10 in a dose-dependent manner. Further studies revealed that ApoEVs inhibited macrophages polarizing into proinflammatory phenotypes via AMPK/SIRT1/NF-κB pathway. In addition, ApoEVs inhibited osteoclasts differentiation and bone resorption measured by TRAP staining, MMP-9 expression, and pit resorption area by downregulating the secretion of TNF-α of proinflammatory macrophages. CONCLUSIONS: The results suggest that ApoEVs inhibited macrophages to skew into proinflammatory phenotypes via AMPK/SIRT1/NF-κB pathway and suppress adjacent osteoclasts formation by reducing the secretion of TNF-α. Our findings shed a light on the treatment for periodontitis based on EVs therapy.


Assuntos
Vesículas Extracelulares , Periodontite , Humanos , Osteoclastos , NF-kappa B/metabolismo , Sirtuína 1/metabolismo , Sirtuína 1/farmacologia , Lipopolissacarídeos/farmacologia , Metaloproteinase 9 da Matriz/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Diferenciação Celular , Macrófagos/metabolismo , Inflamação , Anti-Inflamatórios/farmacologia , Periodontite/metabolismo , Vesículas Extracelulares/metabolismo
19.
Nat Commun ; 13(1): 1664, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351909

RESUMO

Oleaginous microalgae can produce triacylglycerol (TAG) under stress, yet the underlying mechanism remains largely unknown. Here, we show that, in Nannochloropsis oceanica, a bZIP-family regulator NobZIP77 represses the transcription of a type-2 diacylgycerol acyltransferase encoding gene NoDGAT2B under nitrogen-repletion (N+), while nitrogen-depletion (N-) relieves such inhibition and activates NoDGAT2B expression and synthesis of TAG preferably from C16:1. Intriguingly, NobZIP77 is a sensor of blue light (BL), which reduces binding of NobZIP77 to the NoDGAT2B-promoter, unleashes NoDGAT2B and elevates TAG under N-. Under N+ and white light, NobZIP77 knockout fully preserves cell growth rate and nearly triples TAG productivity. Moreover, exposing the NobZIP77-knockout line to BL under N- can double the peak productivity of TAG. These results underscore the potential of coupling light quality to oil synthesis in feedstock or bioprocess development.


Assuntos
Microalgas , Estramenópilas , Microalgas/metabolismo , Nitrogênio/metabolismo , Estramenópilas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triglicerídeos/metabolismo
20.
Fundam Res ; 2(6): 918-928, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38933382

RESUMO

Rare and undiagnosed diseases substantially decrease patient quality of life and have increasingly become a heavy burden on healthcare systems. Because of the challenges in disease-causing gene identification and mechanism elucidation, patients are often confronted with difficulty obtaining a precise diagnosis and treatment. Due to advances in sequencing and multiomics analysis approaches combined with patient-derived iPSC models and gene-editing platforms, substantial progress has been made in the diagnosis and treatment of rare and undiagnosed diseases. The aforementioned techniques also provide an operational basis for future precision medicine studies. In this review, we summarize recent progress in identifying disease-causing genes based on GWAS/WES/WGS-guided multiomics analysis approaches. In addition, we discuss recent advances in the elucidation of pathogenic mechanisms and treatment of diseases with state-of-the-art iPSC and organoid models, which are improved by cell maturation level and gene editing technology. The comprehensive strategies described above will generate a new paradigm of disease classification that will significantly promote the precision and efficiency of diagnosis and treatment for rare and undiagnosed diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...