Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 38(41): 12510-12520, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36205573

RESUMO

Rh catalysts exhibit unexpected high activity for the methanol oxidation reaction (MOR) in alkaline conditions, making them potential anodic catalysts for direct methanol fuel cells (DMFCs). Nevertheless, the MOR mechanism on Rh electrodes has not been clarified thus far, which impedes the development of high-efficiency Rh-based MOR catalysts. To investigate it, a combination of in situ electrochemical techniques called attenuated total refection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) and infrared reflection absorption spectroscopy (IRAS) is used. Cyclic voltammograms of MOR at Rh electrodes show considerable activity in alkaline media rather than acidic media, although the real-time ATR-SEIRA spectral results demonstrate that methanol can rarely self-decompose on Rh at open-circuit conditions. Meanwhile, in combination of ATR-SEIRAS and IRAS results, CO2 and formate are thought to be MOR products, suggesting a dual-pathway mechanism ("CO2 pathway" and "formate pathway"). Specifically, COad species, which are the major intermediates in the CO2 pathway, can produce at lower potentials and be oxidized into CO2 at a potential of 0.5-0.75 V. Concurrently, the formate can be produced from 0.5 V and diffuse into the bulk electrolyte to become one of the MOR products, while the further electrochemical conversion of formate to CO2 is essentially negligible. More directly, the apparent selectivity (r) of the CO2 pathway is estimated to reach ca. 0.63 at 0.9 V, confirming the potential-dependent selectivity of MOR at Rh surfaces. This study might provide fresh insights into the design and fabrication of effective Rh-based catalysts for MOR.

2.
Small ; 16(40): e2004380, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32924278

RESUMO

Rhodium (Rh)-based catalysts may solve the long-standing inefficient oxidation of ethanol for direct ethanol fuel cells (DEFCs); however, the performance of ethanol oxidation reaction (EOR) on existing Rh-based catalysts are far limited. Herein, the Rh-Pb catalysts are synthesized by building Pb and Pb oxide around Rh nanodomain, which shows highly efficient splitting CC bond and facile further oxidation of as-generated C1 intermediates (COad and CHx fragments). It exhibits an ever-highest EOR peak mass activity of ≈2636 mA mg-1 Rh among Rh-based catalysts in alkaline media. Meanwhile, its anodic current remains ≈50% even after a 4 h durability test at 0.53 V versus RHE. As for the C1-pathway selectivity, in situ infrared adsorption spectral (IRAS) results demonstrate that it could significantly improve the production of CO2 . More directly, the apparent faraday efficiency of EOR C1 pathway is estimated to be as high as 20% (at 0.53 V versus RHE). This Rh-Pb catalyst could hold great promise for developing the commercial DEFCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA