Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 157: 106775, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36921458

RESUMO

The aberrant protein sorting has been observed in many conditions, including complex diseases, drug treatments, and environmental stresses. It is important to systematically identify protein mis-localization events in a given condition. Experimental methods for finding mis-localized proteins are always costly and time consuming. Predicting protein subcellular localizations has been studied for many years. However, only a handful of existing works considered protein subcellular location alterations. We proposed a computational method for identifying alterations of protein subcellular locations under drug treatments. We took three drugs, including TSA (trichostain A), bortezomib and tacrolimus, as instances for this study. By introducing dynamic protein-protein interaction networks, graph neural network algorithms were applied to aggregate topological information under different conditions. We systematically reported potential protein mis-localization events under drug treatments. As far as we know, this is the first attempt to find protein mis-localization events computationally in drug treatment conditions. Literatures validated that a number of proteins, which are highly related to pharmacological mechanisms of these drugs, may undergo protein localization alterations. We name our method as PLA-GNN (Protein Localization Alteration by Graph Neural Networks). It can be extended to other drugs and other conditions. All datasets and codes of this study has been deposited in a GitHub repository (https://github.com/quinlanW/PLA-GNN).


Assuntos
Algoritmos , Redes Neurais de Computação , Proteínas/metabolismo , Mapas de Interação de Proteínas , Poliésteres/metabolismo
2.
Interdiscip Sci ; 15(3): 433-438, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37000408

RESUMO

Over the last few years, an increasing number of protein mis-localization events have been reported under various conditions. It is important to understand these events and their relationship with complex disorders. Although many efforts had been made in establishing models with statistical or machine learning algorithms, a comprehensive database resource is still missing. Since the records of experimental-validated protein mis-localization events spread across many literatures, a collection of all these reports in a unique website is demanded. In this paper, we created the dbMisLoc database by manually curating conditional protein mis-localization events from various literatures. The dbMisLoc database records the protein localizations, mis-localizations, conditions for mis-localization, and the original reports. The dbMisLoc database allows the users to intuitively view, search, visualize and download protein mis-localization records. The dbMisLoc database integrates a BLAST search engine, which can search mis-localized proteins that are similar to user queries. The dbMisLoc database can be accessed directly through ( https://dbml.pufengdu.org ). The source code of dbMisLoc database is available from the GitHub repository ( https://github.com/quinlanW/dbMisLoc ) for free. Users can host their own mirrors of dbMisLoc database on their own servers. dbMisLoc is database for manually curated protein mis-localization events. It contains mis-localization events in 14 categories of conditions such as diseases, drug treatments and environmental stresses.


Assuntos
Proteínas , Software , Proteínas/metabolismo , Algoritmos , Bases de Dados Factuais , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...