Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38257518

RESUMO

To investigate the impact of underground water seepage and soil stress fields on the deformation of excavation and support structures, this study initially identified the key influencing factors on excavation deformation. Subsequently, through a finite element simulation analysis using Plaxis, this study explored the effects of critical factors, such as the excavation support form, groundwater lowering depth, permeability coefficient, excavation layer, and sequence on excavation deformation. Furthermore, a comprehensive consideration of various adverse factors was integrated to establish excavation support early warning thresholds, and optimal dewatering strategies. Finally, this study validated the simulation analysis through an on-site in situ testing with wireless sensors in the context of a physical construction site. The research results indicate that the internal support system within the excavation piles exhibited better stability compared to the external anchor support system, resulting in a 34.5% reduction in the overall deformation. Within the internal support system, the factors influencing the excavation deformation were ranked in the following order: water level (35.5%) > permeability coefficient (17.62%) > excavation layer (11.4%). High water levels, high permeability coefficients, and multi-layered soils were identified as the most unfavorable factors for excavation deformation. The maximum deformation under the coupled effect of these factors was established as the excavation support early warning threshold, and the optimal dewatering strategy involved lowering the water level at the excavation to 0.5 m below the excavation face. The on-site in situ monitoring data obtained through wireless sensors exhibited low discrepancies compared to the finite element simulation data, indicating the high precision of the finite element model for considering the fluid-structure interaction.

2.
Front Neurol ; 14: 1285659, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020596

RESUMO

Background: There are very few studies on transcranial magnetic stimulation (TMS) therapy for facial paralysis and no studies comparing the efficacy of central and peripheral TMS in the treatment of peripheral facial paralysis (PFP). Purpose: To observe the therapeutic effect and security of central and peripheral repetitive transcranial magnetic stimulation (rTMS) on PFP. Methods: Patients with unilateral onset of peripheral facial paralysis within 1 month were prospectively recruited, 97 patients with PFP were divided into the peripheral group, central group, and control group. The control group was given common treatment (drug therapy and acupuncture), and the peripheral and central groups received rTMS in addition to conventional treatment. After 2 weeks of treatment, the House-Brackmann (HB) grading scale, Sunnybrook facial grading system (SFGS), and modified Portmann scale (MPS) were used to evaluate the facial muscle function of patients in the three groups. Result: After 2 weeks of rTMS treatment, the HBGS/SFGS/MPS scores of the three groups were significantly better than before (p < 0.05), and the mean change values of HBGS, SFGS, and MPS scores were significantly higher in participants in Peripheral Group (p < 0.001; p < 0.001; p = 0.003; respectively) and Central Group (p = 0.004; p = 0.003; p = 0.009; respectively) than in Control Group. But the mean change values of HBGS, SFGS, and MPS scores showed no significant differences in participants in the Peripheral Group than in the Central Group (p = 0.254; p = 0.139; p = 0.736; respectively) after 2 weeks of treatment (p > 0.05). Conclusion: Our study shows that rTMS can be a safe and effective adjuvant therapy for patients with PFP. Preliminary studies have shown that both peripheral and central stimulation can effectively improve facial nerve function, but there is no significant difference in the efficacy of the two sites.

3.
Mol Plant ; 15(11): 1744-1758, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36176193

RESUMO

Pepper (Capsicum spp.) is an important vegetable crop that provides a unique pungent sensation when eaten. Through construction of a pepper variome map, we examined the main groups that emerged during domestication and breeding of C. annuum, their relationships and temporal succession, and the molecular events underlying the main transitions. The results showed that the initial differentiation in fruit shape and pungency, increase in fruit weight, and transition from erect to pendent fruits, as well as the recent appearance of large, blocky, sweet fruits (bell peppers), were accompanied by strong selection/fixation of key alleles and introgressions in two large genomic regions. Furthermore, we identified Up, which encodes a BIG GRAIN protein involved in auxin transport, as a key domestication gene that controls erect vs pendent fruit orientation. The up mutation gained increased expression especially in the fruit pedicel through a 579-bp sequence deletion in its 5' upstream region, resulting in the phenotype of pendent fruit. The function of Up was confirmed by virus-induced gene silencing. Taken together, these findings constitute a cornerstone for understanding the domestication and differentiation of a key horticultural crop.


Assuntos
Capsicum , Frutas , Frutas/genética , Domesticação , Melhoramento Vegetal , Capsicum/genética , Fenótipo
4.
Nanotechnology ; 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35917694

RESUMO

In this work, the polydopamine (PDA)-mediated antibacterial system is synthesized to carry out antimicrobial activities in vitro and in vivo. First, to precisely control the surface modification of nanodiamonds (NDs), a mathematical kinetics model of PDA deposition is established, and the conditions of synthesis reaction are discussed including influencing factors such as the concentrations of dopamine, reaction time, and the kinetic constant k1, which is a function of several variables associated with the reaction temperature, light irradiance (especially at ultraviolet wavelengths), pH value and concentration of dissolved O2 in the solution. A simulated visualization demonstrates that the deposition thickness of PDA is positively correlated with temperature and light irradiance, and PDA is easier to deposit in an alkaline solution and will be terminated if the dissolved O2 is insufficient. Then, the precisely controlled thickness of PDA can control the growth of AgNPs, rendering the intensity of Raman peaks increased and providing a predictable antibacterial effect against E. coli in vitro. An optimized antibacterial hydrogel containing NDs-PDA/Ag is prepared and characterized by the Fourier transform infrared spectroscopy and field emission scanning electron microscopy. Finally, the antibacterial experiments to promote wound healing in vivo are performed, which are verified by pathological and immunohistochemical-stained sections. This work provides a theoretical basis of predicting the PDA-assisted surface modification of NDs, giving a divinable antibacterial effect, and promoting wounds healing in vivo.

5.
Neural Plast ; 2022: 7536783, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875789

RESUMO

Purpose: The purpose of this study was to evaluate the clinical efficacy of peripheral repetitive transcranial magnetic stimulation (rTMS) in the treatment of idiopathic facial paralysis, to explore an ideal treatment scheme for idiopathic facial paralysis, and to provide evidence for clinical rehabilitation. Methods: 65 patients with idiopathic facial nerve palsy with the first onset were recruited and randomly divided into rTMS group and control group. Both groups received conventional treatment, rTMS group received additional repetitive transcranial magnetic stimulation to the affected side once a day, 5 times a week for 2 weeks. House-Brackmann (HB) grading scale, Sunnybrook facial grading system (SFGS), and modified Portmann scale (MPS) were used to assess facial nerve function before and after treatment, and the time for patients to return to normal facial nerve function and adverse reaction (AR) was also the main observation index. Results: After a 2-week intervention, HB, SFGS, and MPS increased in both groups (P < 0.01); the improvement of HB, SFGS, and MPS in rTMS group was significantly higher than that in control group (P < 0.01). The effective improvement rate of the TMS group after 2 weeks was 90.0%, and that of the control group was 53.3%, and the difference was statistically significant (P < 0.01). Conclusions: Repetitive transcranial magnetic stimulation is a safe and effective noninvasive method for the treatment of idiopathic facial paralysis, which can significantly accelerate the recovery of facial nerve function and provide a new treatment idea for further improving the prognosis of patients with idiopathic facial paralysis.


Assuntos
Paralisia de Bell , Estimulação Magnética Transcraniana , Nervo Facial , Humanos , Paralisia , Estudos Prospectivos , Estimulação Magnética Transcraniana/métodos , Resultado do Tratamento
6.
ACS Appl Bio Mater ; 5(5): 2262-2272, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35500214

RESUMO

Previous studies have shown that chemotherapeutic efficacy could be enhanced with targeted drug delivery. Various DNA origami nanostructures have been investigated as drug carriers. Here, we compared drug delivery functionalities of three similar DNA origami nanostructures, Disc, Donut, and Sphere, that differ in structural dimension. Our results demonstrated that Donut was the most stable and exhibited the highest Dox-loading capacity. MUC1 aptamer modification in our nanostructures increased cellular uptake in MUC1-high MCF-7. Among the three nanostructures, unmodified Donut exerted the highest Dox cytotoxicity in MCF-7, and MUC1 aptamer modification did not further improve its effect, implicating that Dox delivery by Donut was efficient. However, all Dox-loaded nanostructures showed comparable cytotoxicity in MDA-MB-231 due to the innate sensitivity of this cell line to Dox. Our results successfully demonstrated that functional properties of DNA origami nanocarriers could be tuned by structural design, and three-dimensional Donut appeared to be the most efficient nanocarrier.


Assuntos
Neoplasias da Mama , Nanoestruturas , Neoplasias da Mama/tratamento farmacológico , DNA/química , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Feminino , Humanos , Nanoestruturas/química
7.
Artigo em Inglês | MEDLINE | ID: mdl-34734485

RESUMO

With the increasing importance of accurate and early disease diagnosis and the development of personalized medicine, DNA-based electrochemical biosensor has attracted broad scientific and clinical interests in the past decades due to its unique hybridization specificity, fast response time, and potential for miniaturization. In order to achieve high detection sensitivity, the design of DNA electrochemical biosensors depends critically on the improvement of the accessibility of target molecules and the enhancement of signal readout. Here, we summarize the recent advances in DNA probe immobilization and signal amplification strategies with a special focus on DNA nanostructure-supported DNA probe immobilization method, which provides the opportunity to rationally control the distance between probes and keep them in upright confirmation, as well as the contribution of functional nanomaterials in enhancing the signal amplification. The next challenge of biosensors will be the fabrication of point-of-care devices for clinical testing. The advancement of multidisciplinary areas, including nanofabrication, material science, and biochemistry, has exhibited profound promise in achieving such portable sensing devices. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Ácidos Nucleicos , DNA , Técnicas Eletroquímicas
8.
ACS Appl Mater Interfaces ; 13(42): 50516-50523, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34637259

RESUMO

Self-assembly of anisotropic metal nanoparticles serves as an effective bottom-up route for the nanofabrication of novel artifacts. However, there still are many challenges to rationally manipulate anisotropic particles due to the size and geometric restrictions. To avoid the aggregation and mishybridization from DNA sticky-end-guided assembly in buffer solution, in this work, we utilized a cation-controlled surface diffusion strategy to the spatial arrangement of gold nanorods (AuNRs) into 1D and 2D arrays by using DNA origami tiles as binding frames on the solid-liquid interface through π-π stacking interactions. To facilitate the further manipulation of those patterns, a novel pattern transfer method was introduced to transfer the arrays of AuNRs from a liquid to a dry ambient environment with high yield and minor structural damage. The results demonstrated a successful strategy of DNA origami-assisted, large-scale assembly of AuNRs for constructing complex superstructures with potential applications in the nanofabrication of plasmonic and electronic devices.


Assuntos
Materiais Biomiméticos/química , DNA/química , Ouro/química , Nanotubos/química , Difusão , Tamanho da Partícula , Propriedades de Superfície
9.
ACS Synth Biol ; 10(9): 2318-2330, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34431290

RESUMO

Chemical reaction networks (CRNs) based on DNA strand displacement (DSD) can be used as an effective programming language for solving various mathematical problems. In this paper, we design three chemical reaction modules by using the DNA strand displacement reaction as the basic principle, with a weighted reaction module, sum reaction module, and threshold reaction module. These modules are used as basic elements to form chemical reaction networks that can be used to solve 0-1 integer programming problems. The problem can be solved through the three steps of weighting, sum, and threshold, and then the results of the operations can be expressed through a single-stranded DNA output with fluorescent molecules. Finally, we use biochemical experiments and Visual DSD simulation software to verify and evaluate the chemical reaction networks. The results have shown that the DSD-based chemical reaction networks constructed in this paper have good feasibility and stability.


Assuntos
DNA/química , Software , Algoritmos , DNA/metabolismo
10.
Chemistry ; 27(34): 8694-8697, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-33938064

RESUMO

Soft template designing is the most promising strategy for the synthesis of zeolite nanosheets. MFI nanosheets directed by soft templates (containing long-chain alkyl groups or aromatic groups as hydrophobic component) can be found frequently; however, so far, MFI nanosheets synthesized by soft templates with aromatic heterocycle groups (e. g., s-triazine groups) are rare. Herein, a nanosheet-stacked hierarchical MFI zeolite (NSHM) has been synthesized by using a triply branched s-triazine-based surfactant as a bifunctional organic structure-directing agent. On the basis of a geometrical match relationship, a formation model has been proposed. Synthesized NSHM had abundant mesopores stacked by nanosheets and exhibited a high surface area (430 m2 ⋅ g-1 ). The 1 wt% Pd/NSHM attained a significant increase in yield of cyclohexanol/cyclohexanone mixture (from 66 to 85 %) in the oxidation of cyclohexane compared with Silicalite-1 and SBA-15 as supports.

11.
Biomaterials ; 268: 120560, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33285441

RESUMO

Deoxyribonucleic acid (DNA) is a molecular carrier of genetic information that can be fabricated into functional nanomaterials in biochemistry and engineering fields. Those DNA nanostructures, synthesized via Watson-Crick base pairing, show a wide range of attributes along with excellent applicability, precise programmability, and extremely low cytotoxicity in vitro and in vivo. In this review, the applications of functionalized DNA nanostructures in bioimaging and tumor therapy are summarized. We focused on approaches involving DNA origami nanostructures due to their widespread use in previous and current reports. Non-DNA origami nanostructures such as DNA tetrahedrons are also covered. Finally, the remaining challenges and perspectives regarding DNA nanostructures in the biomedical arena are discussed.


Assuntos
Nanoestruturas , Neoplasias , DNA , Humanos , Nanotecnologia , Neoplasias/diagnóstico por imagem , Neoplasias/terapia
12.
ACS Nano ; 14(10): 13047-13055, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33048526

RESUMO

We demonstrate area-selective atomic layer deposition (ALD) of oxides on DNA nanostructures. Area-selective ALD of Al2O3, TiO2, and HfO2 was successfully achieved on both 2D and 3D DNA nanostructures deposited on a polystyrene (PS) substrate. The resulting DNA-inorganic hybrid structure was used as a hard mask to achieve deep etching of a Si wafer for antireflection applications. ALD is a widely used process in coating and thin film deposition; our work points to a way to pattern oxide materials using DNA templates and to enhance the chemical/physical stability of DNA nanostructures for applications in surface engineering.


Assuntos
Nanoestruturas , DNA , Engenharia , Óxidos , Propriedades de Superfície
13.
BMC Plant Biol ; 20(1): 189, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32357837

RESUMO

BACKGROUND: Colletotrichum species are the causal agents of anthracnose, a major disease affecting the yield and quality of pepper (Capsicum spp.). Colletotrichum scovillei is widespread in China, has strong pathogenicity and drug resistance, and causes anthracnose disease in pepper fruits that severely reduces production. Previously, an anti-anthracnose locus AnRGO5 was mapped to the P5 chromosome on the basis of analyses of fruit at the green mature stage. The aim of this study was to narrow down the interval of this locus and identify the gene responsible for conferring resistance. RESULTS: On the basis of results of re-sequencing of Capsicum chinense 'PBC932' and C. annuum '77013', we developed Kompetitive allele-specific PCR (KASPar) markers and insertion-deletion (InDel) markers linked to AnRGO5 at the green mature fruit stage and used them to construct a genetic linkage map (42 markers, 24.4 cM in length). Using data obtained in phenotypic and genotypic analyses of BC4S1, BC4S2, and BC4S3 populations, AnRGO5 was located between the markers P5in-2266-404 and P5in-2268-978 within a physical distance of 164 kb. This region contained five genes, including CA05g17730. CA05g17730 encodes 'R1C-3-like' putative late blight resistance protein homologs. The transcript level of CA05g17730 differed between 'PBC932' and '77013'. The structure of the CA05g17730 gene also differed between 'PBC932' and '77013'. CONCLUSIONS: We narrowed down the QTL interval to a region containing five genes. These results will be useful for further research on the mechanisms of resistance to anthracnose, and for marker assisted selection for anthracnose-resistant capsicum lines.


Assuntos
Capsicum/microbiologia , Mapeamento Cromossômico , Cromossomos de Plantas , Colletotrichum , Genes de Plantas , Doenças das Plantas/genética , Capsicum/genética , Resistência à Doença/genética , Fenótipo , Doenças das Plantas/microbiologia , Locos de Características Quantitativas , Transcriptoma
14.
Anal Chem ; 92(7): 4780-4787, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32054266

RESUMO

Nanomaterials have been extensively utilized in biosensing systems for highly sensitive and selective detection of a variety of biotargets. In this work, a facile, label-free, and ultrasensitive electrochemical DNA biosensor has been developed, based on "urchinlike" carbon nanotube-gold nanoparticle (CNT-AuNP) nanoclusters, for signal amplification. Specifically, electrochemical polymerization of dopamine (DA) was employed to modify a gold electrode for immobilization of DNA probes through the Schiff base reaction. Upon sensing the target nucleic acid, the dual-DNA (reporter and linker) functionalized AuNPs were introduced into the sensing system via DNA hybridization. Afterward, the end-modified single-wall carbon nanotubes with DNA (SWCNT-DNA) were attached to the surface of the AuNPs through linker-DNA hybridization that formed 3D radial nanoclusters, which generated a remarkable electrochemical response. Because of the larger contact surface area and super electronic conductivity of CNT-AuNP clusters, this novel designed 3D radial nanostructure exhibits an ultrasensitive detection of DNA, with a detection limit of 5.2 fM (a linear range of from 0.1 pM to 10 nM), as well as a high selectivity that discriminates single-mismatched DNA from fully matched target DNA under optimal conditions. This biosensor, which combines the synergistic properties of both CNTs and AuNPs, represents a promising signal amplification strategy for achieving a sensitive biosensor for DNA detection and diagnostic applications.


Assuntos
Técnicas Biossensoriais , DNA/análise , Dopamina/química , Técnicas Eletroquímicas , Ouro/química , Nanopartículas Metálicas/química , Nanotubos de Carbono/química , Sondas de DNA/química , Dopamina/síntese química , Tamanho da Partícula , Polimerização , Propriedades de Superfície
15.
Nanoscale ; 11(39): 18026-18030, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31560004

RESUMO

We present the pH-triggered reversible assembly of DNA origami clusters in a stepwise fashion. The structure formation and dissociation are controlled by a series of consecutive pH-stimulation processes that rely on the triplex-to-duplex transition of DNA triplexes in different pH conditions. This multilevel dynamic assembly strategy brings more structural complexity and provides the possibility of developing intelligent materials for engineering applications.


Assuntos
DNA/química , Nanoestruturas/química , Conformação de Ácido Nucleico , Concentração de Íons de Hidrogênio
16.
ACS Omega ; 4(6): 11025-11031, 2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31460200

RESUMO

MicroRNAs (miRNAs) have emerged as the promising molecular biomarkers for early diagnosis and enhanced understanding of the molecular pathogenesis of cancers as well as certain diseases. Here, a facile, label-free, and amplification-free electrochemical biosensor was developed to detect miRNA by using DNA origami nanostructure-supported DNA probes, with methylene blue (MB) serving as the hybridization redox indicator, for the first time. Specifically, the use of cross-shaped DNA origami nanostructures containing multiple single-stranded DNA probes at preselected locations on each DNA nanostructure could increase the accessibility and the recognition efficiency of the probes (due to the rational controlled density of DNA probes). The successful immobilization of DNA origami probes and their hybridization with targeted miRNA-21 molecules was confirmed by electrochemical impedance spectroscopy and cyclic voltammetry methods. A differential pulse voltammetry technique was employed to record the oxidation peak current of MB before and after target hybridization. The linear detection range of this biosensor was from 0.1 pM to 10.0 nM, with a lower detection limit of 79.8 fM. The selectivity of the miRNA biosensor was also studied by observing the discrimination ability of single-base mismatched sequences. Because of the larger surface area and unprecedented customizability of DNA origami nanostructures, this strategy demonstrated great potential for sensitive, selective, and label-free determination of miRNA for translational biomedical research and clinical applications.

17.
Comput Biol Med ; 109: 112-120, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31054386

RESUMO

Molecular logic gates play an important role in many fields and DNA-based logic gates are the basis of DNA computers. A dynamically NAND gate system on the DNA origami template is established in this paper. Naturally, the system is stable in solution without any reaction. Different logical values are mapped into different DNA input strands. When logical values are entered into the system, the corresponding DNA input strands undergo a directed hybridization chain reaction (HCR) at corresponding positions on the DNA origami template. The operation results are identified by disassembly between the nanogold particles (AuNPs) and DNA origami template. The nanogold particles remain on the DNA origami template, indicating that the result is true; The nanogold particles are dynamically separated from the DNA origami template, indicating that the result is false. The simulation of the system through Visual DSD shows that the reaction strictly followed the designed direction, and no error products are generated during the reaction. These simulation results show that the system has the advantages of feasibility, stability and intelligence.


Assuntos
Computadores Moleculares , DNA/química , Ouro/química , Nanopartículas Metálicas/química
18.
J Vis Exp ; (141)2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30507924

RESUMO

Surface functionalization of nanodiamonds (NDs) is still challenging due to the diversity of functional groups on the ND surfaces. Here, we demonstrate a simple protocol for the multifunctional surface modification of NDs by using mussel-inspired polydopamine (PDA) coating. In addition, the functional layer of PDA on NDs could serve as a reducing agent to synthesize and stabilize metal nanoparticles. Dopamine (DA) can self-polymerize and spontaneously form PDA layers on ND surfaces if the NDs and dopamine are simply mixed together. The thickness of a PDA layer is controlled by varying the concentration of DA. A typical result shows that a thickness of ~5 to ~15 nm of the PDA layer can be reached by adding 50 to 100 µg/mL of DA to 100 nm ND suspensions. Furthermore, the PDA-NDs are used as a substrate to reduce metal ions, such as Ag[(NH3)2]+, to silver nanoparticles (AgNPs). The sizes of the AgNPs rely on the initial concentrations of Ag[(NH3)2]+. Along with an increase in the concentration of Ag[(NH3)2]+, the number of NPs increases, as well as the diameters of the NPs. In summary, this study not only presents a facile method for modifying the surfaces of NDs with PDA, but also demonstrates the enhanced functionality of NDs by anchoring various species of interest (such as AgNPs) for advanced applications.


Assuntos
Indóis/química , Nanopartículas Metálicas/química , Nanodiamantes/química , Polímeros/química , Prata/química , Biomimética , Polimerização
19.
J Mater Chem B ; 6(11): 1605-1612, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30221004

RESUMO

Self-assembled DNA nanostructures have attracted significant research interest in biomedical applications because of their excellent programmability and biocompatibility. To develop multifunctional drug delivery from DNA nanostructures, considerable key information is still needed for clinical application. Traditional fixed endpoint assays do not reflect the dynamic and heterogeneous responses of cells with regard to drugs, and may lead to the misinterpretation of experimental results. For the first time, an integrated time-lapse live cell imaging system was used to study the cellular internalization and controlled drug release profile of three different shaped DNA origami/doxorubicin (DOX) complexes for three days. Our results demonstrated the dependence of DNA nanostructures on shape for drug delivery efficiency, while the rigid 3D DNA origami triangle frame exhibited enhanced cellular uptake capability, as compared with flexible 2D DNA structures. In addition, the translocation of released DOX into the nucleus was proved by fluorescence microscopy, in which a DOX-loaded 3D DNA triangle frame displayed a stronger accumulation of DOX in nuclei. Moreover, given the facile drug loading and auto fluorescence of the anti-cancer drug, DOX, our results suggest that the DNA nanostructure is a promising candidate, as a label-free nanocarrier, for DOX delivery, with great potential for anticancer therapy as well.

20.
Bioconjug Chem ; 29(8): 2520-2525, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30011985

RESUMO

The hybridization of gold nanoparticles (AuNPs), along with other nanomaterials, has encouraged applications in biomedical imaging, plasmonic enhancement, and catalysts. However, the rational organization of AuNPs in nanotechnology fields remains difficult, which might require multiaddressability of nanoparticles for heterogeneous conjugation. In this work, multifunctional AuNPs were developed by conjugation of two types of DNA strands containing different sequences, which allowed the AuNPs to recognize multiple binding sites. The ratio of different sequences of DNA, and the different lengths of coding DNA oligos on the surface of the AuNPs, had varied influences on the functionality of the multifunctional DNA-AuNPs. This new type of DNA-decorated nanoparticles will enhance the diversity and complexity of nanoparticle-based bottom-up fabrication in materials science and bionanotechnology.


Assuntos
DNA/química , Ouro/química , Nanopartículas Metálicas/química , Sítios de Ligação , Hibridização de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...