Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 257(Pt 2): 128773, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38096932

RESUMO

Periodontitis is a chronic inflammation of the periodontium caused by a persistent bacterial infection, resulting in destruction of the supporting structures of teeth. Analysis of microbial composition in saliva can inform periodontal status. Actinobacillus actinomycetemcomitans (Aa), Porphyromonas gingivalis (Pg), and Streptococcus mutans (Sm) are among reported periodontal pathogens, and were used as model systems in this study. Our atomic force microscopic (AFM) study revealed that these pathogens are biological nanorods with dimensions of 0.6-1.1 µm in length and 500-700 nm in width. Current bacterial detection methods often involve complex preparation steps and require labeled reporting motifs. Employing surface-enhanced Raman spectroscopy (SERS), we revealed cell-type specific Raman signatures of these pathogens for label-free detection. It overcame the complexity associated with spectral overlaps among different bacterial species, relying on high signal-to-noise ratio (SNR) spectra carefully collected from pure species samples. To enable simple, rapid, and multiplexed detection, we harnessed advanced machine learning techniques to establish predictive models based on a large set of raw spectra of each bacterial species and their mixtures. Using these models, given a raw spectrum collected from a bacterial suspension, simultaneous identification of all three species in the test sample was achieved at 95.6 % accuracy. This sensing modality can be applied to multiplex detection of a broader range and a larger set of periodontal pathogens, paving the way for hassle-free detection of oral bacteria in saliva with little to no sample preparation.


Assuntos
Periodontite , Análise Espectral Raman , Humanos , Periodontite/microbiologia , Porphyromonas gingivalis , Periodonto , Saliva
2.
Acta Biomater ; 152: 335-344, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36055614

RESUMO

Collagen is the predominant structural protein within connective tissues. Pelvic organ prolapse (POP) is characterized by weakening of the pelvic floor connective tissues and loss of support for pelvic organs. In this study, we examined the multiscale structure, molecular composition and biomechanics of native collagen fibrils in connective tissues of the posterior vaginal fornix collected from healthy women and POP patients, and established the correlation of these properties with clinical POP quantification (POP-Q) scores. The collagen characteristics, including collagen amount, ratio of Collagen I and Collagen III, collagen fibril d-period, alignment and stiffness, were found to change progressively with the increase of the clinical measurement of Point C, a measure of uterine descent and apical prolapse. The results imply that a severe prolapse is associated with stiffer collagen fibrils, reduced collagen d-period, increased fibril alignment and imbalanced collagen synthesis, degradation and deposition. Additionally, prolapse progression appears to be synchronized with deterioration of the collagen matrix, suggesting that a POP-Q score obtained via a non-invasive clinical test can be potentially used to quantitatively assess collagen abnormality of a patient's local tissue. STATEMENT OF SIGNIFICANCE: Abnormal collagen metabolism and deposition are known to associate with connective tissue disorders, such as pelvic organ prolapse. Quantitative correlation of the biochemical and biophysical characteristics of collagen in a prolapse patient's tissue with the clinical diagnostic measurements is unexplored and unestablished. This study fills the knowledge gap between clinical prolapse quantification and the individual's cellular and molecular disorders leading to connective tissue failure, thus, provides the basis for clinicians to employ personalized treatment that can best manage the patient's condition and to alert pre-symptomatic patients for early management to avoid unwanted surgery.


Assuntos
Prolapso de Órgão Pélvico , Fenômenos Biomecânicos , Colágeno/química , Tecido Conjuntivo , Feminino , Humanos , Prolapso de Órgão Pélvico/metabolismo , Vagina/metabolismo
3.
Biochem Biophys Res Commun ; 589: 254-259, 2022 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-34933199

RESUMO

Indocyanine green (ICG) is an FDA-approved near infrared (NIR) imaging agent for diagnosis and imaging guided surgery. It also exhibits phototoxicity under high-dose NIR irradiation, expanding its application as a photo-therapeutic agent. Since ICG's efficiency as a type II photosensitizer has been controversial due to its low triplet state yield, other mechanisms have been explored. While claims of toxic decomposition products, accompanied by irreversible ICG photobleaching, were proposed as the main mechanism, evidences from systemic studies are lacking. In this work, we aimed to unravel the factors affecting ICG photobleaching and the associated photo-killing effect on neuroblastoma, one of the most common pediatric tumors but often escapes therapy. Specifically, we examined how albumin-induced ICG stabilization affects the ICG photobleaching process, and the effect of photobleached ICG on cell proliferation and viability of neuroblastoma cells. It was found that ICG photobleaching was significant only under aerobic conditions and was more efficient in solutions with higher concentration ICG monomers, which were stabilized from aggregates by the presence of BSA while increasing photobleaching and associated oxygen consumption. Photobleached ICG inhibited cell proliferation, indicating another effect of tumor treatment by ICG. Taken together, while enhanced photobleaching by BSA-bound ICG monomers may reduce the photodynamic effect targeting cellular components, the photoproducts directly contribute to tumor growth inhibition and assist in a secondary mechanism to stop tumor growth.


Assuntos
Verde de Indocianina/farmacologia , Neuroblastoma/patologia , Fotodegradação , Animais , Bovinos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Oxigênio/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Soroalbumina Bovina/metabolismo
4.
Polymers (Basel) ; 15(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36616441

RESUMO

Electrospinning is a simple, low-cost, and highly efficient technique to generate desirable nano/microfibers from polymer solutions. Silk fibroin (SF), a biopolymer found in Bombyx mori cocoons, has attracted attention for various biomedical applications. In this study, functionalized CNT was incorporated in SF to generate biocomposite fibers by electrospinning. The electrospun (E-spun) fibers were well aligned with morphology mimicking the locally oriented ECM proteins in connective tissues. While as-spun fibers dissolved in water in just two minutes, ethanol vapor post-treatment promoted ß-sheet formation leading to improved fiber stability in an aqueous environment (>14 days). The addition of a minute amount of CNT effectively improved the E-spun fiber alignment and mechanical strength while retained high biocompatibility and biodegradability. The fibers' electrical conductivity increased by 13.7 folds and 21.8 folds, respectively, in the presence of 0.1 w% and 0.2 w% CNT in SF fibers. With aligned SF-CNT 0.1 % fibers as a cell culture matrix, we found electrical stimulation effectively activated fibroblasts from patients of pelvic organ prolapse (POP), a connective tissue disorder. The stimulation boosted the fibroblasts' productivity of collagen III (COLIII) and collagen I (COLI) by 74 folds and 58 folds, respectively, and reduced the COLI to COLIII ratio favorable for tissue repair. The developed material and method offer a simple, direct, and effective way to remedy the dysfunctional fibroblasts of patients for personalized cell therapeutic treatment of diseases and health conditions associated with collagen disorder.

5.
J Compos Sci ; 5(6)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35664989

RESUMO

Fibrillar collagen is a one-dimensional biopolymer and is the most abundant structural protein in the extracellular matrix (ECM) of connective tissues. Due to the unique properties of carbon nanotubes (CNTs), considerable attention has been given to the application of CNTs in developing biocomposite materials for tissue engineering and drug delivery. When introduced to tissues, CNTs inevitably interact and integrate with collagen and impose a discernible effect on cells in the vicinity. The positive effect of the collagen-CNT (COL-CNT) matrix in tissue regeneration and the cytotoxicity of free CNTs have been investigated extensively. In this study, we aimed to examine the effect of COL-CNT on mediating the interaction between the matrix and SKOV3 ovarian cancer cells. We generated unidirectionally aligned collagen and COL-CNT nanofibrils, mimicking the structure and dimension of collagen fibrils in native tissues. AFM analysis revealed that the one-dimensional structure, high stiffness, and low adhesion of COL-CNT greatly facilitated the polarization of SKOV3 cells by regulating the ß-1 integrin-mediated cell-matrix interaction, cytoskeleton rearrangement, and cell migration. Protein and gene level analyses implied that both collagen and COL-CNT matrices induced the epithelial-mesenchymal transition (EMT), and the COL-CNT matrix prompted a higher level of cell transformation. However, the induced cells expressed CD44 at a reduced level and MMP2 at an increased level, and they were responsive to the chemotherapy drug gemcitabine. The results suggested that the COL-CNT matrix induced the transdifferentiation of the epithelial cancer cells to mature, less aggressive, and less potent cells, which are inapt for tumor metastasis and chemoresistance. Thus, the presence of CNT in a collagen matrix is unlikely to cause an adverse effect on cancer patients if a controlled dose of CNT is used for drug delivery or tissue regeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...