Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(8): 11244-11258, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36791272

RESUMO

The emerging intelligent piezoresistive yarn/textile-based sensors are of paramount importance for skin-interface electronics, owing to their unparalleled features including softness, breathability, and easy integration with functional devices. However, employing a facile way to fabricate 1D sensing yarns with mechanical robustness, multi-functional integration, and comfortability is still demanded for satisfying the practical applications. Herein, a facile one-step synchronous conjugated electrospinning and electrospraying technique is innovatively employed to continuously construct an Ag NW-embedded polyurethane (PU) nanofiber sensing yarn (AENSY) with hierarchical architecture. This 1D AENSY with weavability and stretchability can be woven into AENSY textile-based sensors integrated with functions of strain and pressure sensing. In this embedded multi-scale architecture, Ag NWs are evenly embedded and locked in the oriented and twisted PU nanofiber (PUNF) scaffold, forming the hierarchical mechanical sensing layer on the surface of the AENSY with favorable stability. Meanwhile, the presence of the elastic PUNFs enhances porosity, elasticity, and considerable deformation space, which in turn endow the AENSY textile-based sensor with a gauge factor (GF) up to 1010, a pressure sensitivity up to 16.7 N-1, high stretchability up to 160%, and high stability under long-term cycles. In addition, the AENSY textile-based sensor exhibits light weight and the unique advantage of skin-friendliness with the human body, which can be directly and conformally attached to the curved human skin to monitor the various human movements. Furthermore, the weavable AENSYs can be integrated into smart textiles with sensing arrays, which are capable for spatial pressure and strain mapping. Thus, the continuous one-step developing process and the stable embedded-twisted fiber structure provide a promising strategy to develop innovative smart yarns and textiles for personalized healthcare and human-machine interfaces.

2.
J Colloid Interface Sci ; 628(Pt A): 829-839, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35963170

RESUMO

HYPOTHESIS: Advanced thermal-insulation materials for human use in high-temperature and ultra-low-temperature environments have received extensive attention. However, facile synthesis of aerogels with excellent mechanical and thermal properties via freeze-drying or electrospinning alone is still challenging. We hypothesized that a polyimide aerogel with high mechanical strength and good thermal-insulation performance and suitability for various applications at high and low temperatures could be prepared facilely using a simple and novel preparation strategy that combines electrospinning, freeze-drying, and in situ thermal crosslinking. EXPERIMENTS: Polyamideimide (PAI) nanofibers loaded with bismaleimide (BMI) were electrospun and dispersed into a polyamic acid aqueous solution. PAI/BMI-nanofiber-reinforced polyimide (IBNR-PI) aerogels with an interpenetrating network structure were prepared by freeze-drying and heat treatment. FINDINGS: The IBNR-PI aerogels possessed extremely low volume density (26 mg cm-3) and high porosity (94.92%). Most importantly, they showed high tensile strength and good compressive fatigue resistance with plastic deformation of only 7% after 1000 compression cycles. The aerogels also showed a significantly low thermal conductivity (30.06 mW m-1 K-1) and excellent thermal insulation over a wide temperature range. Thus, the IBNR-PI aerogels are excellent candidates for thermal-insulation materials at high and low temperatures.


Assuntos
Nanofibras , Géis/química , Humanos , Nanofibras/química , Plásticos , Porosidade , Condutividade Térmica
3.
Sep Purif Technol ; 289: 120726, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35228829

RESUMO

Air pollution has steadily worsened in recent years, and the coronavirus disease 2019 has been spreading since 2020. The electrospun fibrous filters present superior filtration performance, while the low mechanical property and yield of them limit their applications, which must be addressed urgently. Herein, polyacrylonitrile (PAN) sub-micron fibrous membrane with hierarchical structure was easily manufactured using free surface electrospinning in mass production for air purification. The "sandwich" structured fibrous filter was thermally bonded with bi-component nonwoven through traditional bonding procedures, due to melting and bonding of the cortex of bi-component fibers, in which the electrospun fibrous web as the mid layer with tortuous channels showed superior filtration performance for aerosol particles with diameter of 260 nm, which could effectively intercept different-sized particles suspended in the air. In addition, the impact of the processing parameters on the characteristics and filtration mechanisms of thermally bonded composite materials was thoroughly investigated. The results showed that composite material with "dendrites" and "axon" morphologies presented the best formability, outstanding peeling strength and breaking strength, and steady filtration performance, following an easy through-air bonding procedure, making it useful for post-processing in air purification. The reinforced composite filter, which is thermally bonded with sub-micron fibers with high yield and nonwoven, is save-energy and has a low operation cost, indicating its promising commercial possibilities.

4.
J Colloid Interface Sci ; 578: 195-206, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32526523

RESUMO

Particulate matter (PM) pollution has enormously threatened ecosystem and public health. Among various air filtration medium, fibrous ones are very attracting and promising, with an array of advantages such as high specific surface area, and good internal connectivity. Even so, the large-scale fabrication of fibrous filtration materials still remains challenging. Here, three-dimensional polyacrylonitrile/polyimide (PAN/PI) composite sub-micro fibrous membranes were fabricated facilely via free surface electrospinning for precise filtration of PM0.26 pollutants, where the waste PI short fibers were utilized as raw material. The resultant composite fibrous membranes, featuring thin fiber diameter (~150 nm), low areal density (<0.8 g m-2), large porosity, and highly tortuous airflow channels with uniform poresize distribution, possessed excellent mechanical property with tensile strength of 4.95 MPa (twice that of pristine PAN), high thermal durability as well as remarkable filtration performance for ultrafine NaCl aerosol particles (≤0.26 µm) even after multiple filtration tests at high airflow velocity of 14.1 cm s-1. The deepened aperture channels inside three-dimensional sub-micro fibrous membranes are tortuous enough for capturing ultrafine PMs from the airstream mainly via diffusion, interception, and impaction mechanisms, and the reported large-scale fabrication of cost-effective homogeneous PAN/PI fibrous filter media is promising for industrial production and commercial applications.

5.
Soft Matter ; 15(48): 10020-10028, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31763659

RESUMO

The development of polyelectrolyte-surfactant complexes (PESCs) has attracted extensive research interest in different fields of applications. However, the liquid state of PESCs has limited their utility in applications where solid materials are required. In this study, novel antibacterial fibers were fabricated via electrospinning PESCs in the solid state without any additives. The PESCs were prepared in aqueous mixtures of pre-hydrolyzed polyacrylonitrile (HPAN), a polyelectrolyte, and cetyltrimethyl ammonium chloride (CTAC), an antibacterial cationic surfactant, by taking advantage of the self-aggregation behavior of the polyelectrolyte and surfactant, which increased the antibacterial agent loading ability and, thus, the antibacterial activity of polymers. By release-killing and contact-killing mechanisms, the as-spun PESC nanofibrous membranes exhibited strong antibacterial ability against both Gram-positive and Gram-negative bacteria, killing 5 log CFU of E. coli and S. aureus within a contact time as short as 30 min. Furthermore, PESCs were blended with polycaprolactone (PCL) to prepare composite nanofibrous membranes as a novel wound dressing, which showed excellent antibacterial activity and favorable cytocompatibility, with the mechanical strength high enough to satisfy the clinical application requirements. The PESC fibers with durable antibacterial activity presented in the current work would be promising for medical applications.


Assuntos
Antibacterianos , Bandagens , Nanofibras , Polieletrólitos , Tensoativos , Células 3T3 , Animais , Antibacterianos/administração & dosagem , Antibacterianos/química , Sobrevivência Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Camundongos , Nanofibras/administração & dosagem , Nanofibras/química , Polieletrólitos/administração & dosagem , Polieletrólitos/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Tensoativos/administração & dosagem , Tensoativos/química , Tecnologia Farmacêutica
6.
ACS Appl Mater Interfaces ; 11(47): 44682-44690, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31596064

RESUMO

One of the fundamental properties of natural systems is their water transport ability, and living systems have efficient moisture management features. Here, a unique structure, inspired by the water transfer behavior in trees, was designed for one-dimensional (1D) fiber assemblies. In this 1D fiber assembly structure, a differential capillary effect enabling rapid water transfer at the interface between traditional cotton fibers and electrospun nanofibers was explored. A tree-like structure yarn was constructed successfully by novel electrospinning technology, and the effect was quantitatively controlled by precisely regulating the fibers' wettability. Fabrics based on these tree-like core-spun yarns possessed advanced moisture-wicking performance, a high one-way transport index (R) of 1034.5%, and a desirable overall moisture management capability of 0.88, which are over two times higher than those of conventional fabrics. This moisture-wicking regime endowed these 1D fiber assemblies with unique water transfer channels, providing a new strategy for moisture-heat transmission, microfluidics, and biosensor applications.

7.
Appl Spectrosc ; 71(10): 2367-2376, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28537417

RESUMO

Cashmere and wool are two protein fibers with analogous geometrical attributes, but distinct physical properties. Due to its scarcity and unique features, cashmere is a much more expensive fiber than wool. In the textile production, cashmere is often intentionally blended with fine wool in order to reduce the material cost. To identify the fiber contents of a wool-cashmere blend is important to quality control and product classification. The goal of this study is to develop a reliable method for estimating fiber contents in wool-cashmere blends based on near-infrared (NIR) spectroscopy. In this study, we prepared two sets of cashmere-wool blends by using either whole fibers or fiber snippets in 11 different blend ratios of the two fibers and collected the NIR spectra of all the 22 samples. Of the 11 samples in each set, six were used as a subset for calibration and five as a subset for validation. By referencing the NIR band assignment to chemical bonds in protein, we identified six characteristic wavelength bands where the NIR absorbance powers of the two fibers were significantly different. We then performed the chemometric analysis with two multilinear regression (MLR) equations to predict the cashmere content (CC) in a blended sample. The experiment with these samples demonstrated that the predicted CCs from the MLR models were consistent with the CCs given in the preparations of the two sample sets (whole fiber or snippet), and the errors of the predicted CCs could be limited to 0.5% if the testing was performed over at least 25 locations. The MLR models seem to be reliable and accurate enough for estimating the cashmere content in a wool-cashmere blend and have potential to be used for tackling the cashmere adulteration problem.

8.
J Microsc ; 263(3): 320-7, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27229441

RESUMO

For an automated microscopic imaging system, the image acquisition speed is one of the most critical performance features because many applications require to analyse high-volume images. This paper illustrates a novel approach for rapid acquisition of high-volume microscopic images used to count blood cells automatically. This approach firstly forms a panoramic image of the sample slide by stitching sequential images captured at a low magnification, selects a few basic points (x, y) indicating the target areas from the panoramic image, and then refocuses the slide at each of the basic points at the regular magnification to record the depth position (z). The focusing coordinates (x, y, z) at these basic points are used to calculate a predicted focal plane that defines the relationship between the focus position (z) and the stage position (x, y). Via the predicted focal plane, the system can directly focus the objective lens at any local view, and can tremendously save image-acquisition time by avoiding the autofocusing function. The experiments showed how to determine the optimal number of the basic points at a given imaging condition, and proved that there is no significant difference between the images captured using the autofocusing function or the predicted focal plane.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...