Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(23): 11998-12008, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38814080

RESUMO

The aromatization of light alkane is an important process for increasing the aromatic production and utilization efficiency of light alkane resources simultaneously. Herein, Ga-modified HZSM-5 catalysts were prepared and investigated by a series of characterization techniques such as X-ray diffraction, nuclear magnetic resonance spectroscopy, transmission electron microscopy, N2 adsorption-desorption, and NH3 temperature-programmed desorption to study their physicochemical properties. The catalytic performance in propane aromatization was also tested. Importantly, the structure-activity relationship, reaction pathway, and coke formation mechanism in propane aromatization were systematically explored. It was found that different Ga introduction methods would affect the amounts of Brønsted and Lewis acid sites, and Ga-HZSM-5 prepared by the hydrothermal method exhibited higher amounts of Brønsted and Lewis acid sites but a lower B/L ratio. As a result, Ga-HZSM-5 showed higher propane conversion and benzene, toluene, and xylene yield compared with that of Ga2O3/HZSM-5. The propane aromatization reaction pathway indicated that propane dehydrogenation to propene was a crucial step for aromatic formation. The increase of the Lewis acid density in Ga-HZSM-5 can effectively improve the dehydrogenation rate and promote the aromatization reaction. Furthermore, the formation of coke species was studied by thermogravimetry-mass spectrometry and Raman approaches, the results of which indicated that the graphitization degree of coke formed over spent Ga-HZSM-5 is lower, resulting in enhanced anticoking stability.

2.
Physiol Plant ; 175(5): e14002, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37882294

RESUMO

The escalating global climate change significantly threatens plant growth, development, and production through salinity stress. Flavonoids, a crucial category of secondary metabolites, have been extensively studied for their role in modulating plant growth and development mechanisms in the face of biological and abiotic stress. The flavonol synthetase (FLS) gene plays a key role in the biosynthesis and accumulation of flavonoids. To investigate the correlation between salt tolerance and flavonol synthesis, JsFLS5 was overexpressed in the callus of Juglans sigillata cv. "Qianhe-7." This study shows that the upregulation of JsFLS5 significantly elevates the overall flavonoid content by modulating the expression of genes associated with flavonoid synthesis under salinity stress conditions. Additionally, the overexpressing callus exhibited enhanced resistance to salt stress compared to the wild-type callus, as evidenced by reduced levels of reactive oxygen species accumulation, electrolyte leakage, and malondialdehyde content in the overexpressing callus relative to the wild type (WT). Moreover, the overexpressing callus showed higher antioxidant enzyme activity and a more efficient ascorbic acid-glutathione cycle. Furthermore, the concentration of Na+ in the overexpressing callus was lower than WT, resulting in a decreased Na+ /K+ ratio. These findings suggest that JsFLS5 overexpression in calli effectively mitigates the oxidative damage induced by osmotic stress and reduces Na+ toxicity by enhancing flavonoid synthesis under salt stress conditions. Consequently, this study offers a novel perspective for comprehending the role of JsFLS5 in the response to abiotic stress in J. sigillata.


Assuntos
Juglans , Tolerância ao Sal , Espécies Reativas de Oxigênio/metabolismo , Tolerância ao Sal/genética , Juglans/genética , Juglans/metabolismo , Plantas Geneticamente Modificadas/genética , Antioxidantes/metabolismo , Estresse Fisiológico/genética , Íons/metabolismo , Sódio/metabolismo , Flavonoides/metabolismo , Flavonóis/metabolismo , Flavonóis/farmacologia , Salinidade , Regulação da Expressão Gênica de Plantas
3.
Int J Biol Macromol ; 251: 126148, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37591424

RESUMO

Canna indica, which produce conspicuous and colorful flowers, are widely appreciated as ornamental plants. We used Pacific Biosciences sequencing (PacBio) and chromosome conformation capture (Hi-C) genome scaffolding to build a high-quality chromosome-scale genome assembly of C. indica and the genome assembly was 821Mb with a contig N50 of 48Mb assembled into nine chromosomes. The genome of C. indica was predicted to contain 31,130 genes and 30,816 genes were functionally annotated. Genome annotation identified 522 Mb (63.59 %) as repetitive sequences. Genome evolution analysis showed that whole-genome duplication occurred 53.4 million years ago. Transcriptome analysis revealed that petal coloration was linked with the expression of genes encoding enzymes involved in anthocyanin biosynthesis, carotenoid biosynthesis, and the methylerythritol phosphate (MEP) pathway. Furthermore, modules of co-expressed genes and hub genes were identified via weighted gene co-expression network analysis. These results suggested that, in Canna indica, deep red petal coloration was regulated by CHS2 and yellow petal coloration was associated with expression of ARF6 and NAC14. Considered together, the current study revealed a high-quality reference genome which may provide new insights into the molecular basis of flower coloration in Canna indica and help enhance the conservation and breeding of ornamental plants in general.

4.
Ying Yong Sheng Tai Xue Bao ; 34(3): 699-707, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37087653

RESUMO

Walnut and Rosa roxburghii are important arbor and shrub fruit trees cultivated in the southwest mountainous area of China. Furthermore, those two species are compound cultivated in this area. In this study, we investigated the growth, yield, fruit quality, photosynthesis, and soil fertility of R. roxburghii in a 7-year typical 'Qianhe 7'/ 'Guinong 5' compound planting pattern in Guizhou. The results showed that compared with the monoculture, photosynthetic pigment content and photosynthetic rate of R. roxburghii leaves were significantly lower in the compound plantation. The growth and yield of R. roxburghii decreased significantly, with a 77.7% reduction of yield. Fruit quality of R. roxburghii was improved. The content of ascorbic acid (Vc), total phenol, carbohydrate, K, Ca, Mg, Fe, Mn, Zn, and other substances increased significantly. Fruit Vc and Mn content increased by 34.1% and 64.1%, respectively. The contents of total N, available N and K in the soil increased by 45.8%, 34.8% and 67.8%, respectively. The abundance of soil microorganisms and functional bacteria increased significantly, with the increase of bacteria and fungi being more than 36.0%. The increase of potassium bacteria and nitrogen fixing bacteria was 71.3% and 124.8%, respectively. However, the contents of organic matter, carbon-nitrogen ratio, total P, total K, available mineral nutrient (P, Ca, Mg, Fe, Mn, Cu, Zn) contents decreased. While the activities of soil urease and catalase were increased, the activities of other soil enzymes (sucrase, cellulase, protease, phosphatase) were significantly reduced. In summary, with continuous growth of walnuts in the walnut/R. roxburghii compound plantation, there was obvious shade and soil fertility competition for R. roxburghii, which affected its yield, but had a improvement effect on fruit quality.


Assuntos
Juglans , Rosa , Frutas , Solo , Nozes
5.
Angew Chem Int Ed Engl ; 62(13): e202218799, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36719175

RESUMO

Despite intensive research in surface enhanced Raman spectroscopy (SERS), the influence mechanism of chemical effects on Raman signals remains elusive. Here, we investigate such chemical effects through tip-enhanced Raman spectroscopy (TERS) of a single planar ZnPc molecule with varying but controlled contact environments. TERS signals are found dramatically enhanced upon making a tip-molecule point contact. A combined physico-chemical mechanism is proposed to explain such an enhancement via the generation of a ground-state charge-transfer induced vertical Raman polarizability that is further enhanced by the strong vertical plasmonic field in the nanocavity. In contrast, TERS signals from ZnPc chemisorbed flatly on substrates are found strongly quenched, which is rationalized by the Raman polarizability screening effect induced by interfacial dynamic charge transfer. Our results provide deep insights into the understanding of the chemical effects in TERS/SERS enhancement and quenching.

6.
Hortic Res ; 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35039862

RESUMO

In the current study, we used a grapevine cell line in which actin filaments are labeled by GFP to show that aluminum causes actin remodeling through activation of NADPH oxidase in the plasma membrane, followed by activation of phytoalexin synthesis genes. Elimination of actin filaments by latrunculin B disrupts gene activation and inhibition of MAPK signaling by the inhibitor PD98059. Interestingly, aluminum also induces the transcription of ISOCHORISMATE SYNTHASE, a key enzyme for the synthesis of salicylic acid, as well as PR1, a gene that is known to be responsive to salicylic acid. However, while salicylic acid responses are usually a hallmark of the hypersensitive response, aluminum-triggered defense is not accompanied by cell death. Both actin remodeling and gene activation in response to aluminum can be suppressed by the natural auxin indole acetic acid, suggesting that the actin response is not caused by nonspecific signaling. Further evidence for the specificity of the aluminum-triggered activation of phytoalexin synthesis genes comes from experiments in which plant peptide elicitors induce significant cellular mortality but do not evoke induction of these transcription. The response in grapevine cells can be recapitulated in grapevine leaf discs from two genotypes contrasting in stilbene inducibility. Here, aluminum can induce accumulation of the central grapevine phytoalexin, the stilbene aglycone trans-resveratrol; this is preceded by a rapid induction of transcription for RESVERATROL SYNTHASE and the regulating transcription factor MYB14. The amplitude of this induction reflects the general stilbene inducibility of these genotypes, indicating that the aluminum effect is not caused by nonspecific toxicity but by activation of specific signaling pathways. The findings are discussed in relation to a model in which actin filaments activate a specific branch of defense signaling, acting in concert with calcium-dependent PAMP-triggered immunity. This pathway links the apoplastic oxidative burst through MAPK signaling with the activation of defense-related transcription.

7.
J Phys Chem Lett ; 12(7): 1961-1968, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33591760

RESUMO

Probing bond breaking and making as well as related structural changes at the single-molecule level is of paramount importance for understanding the mechanism of chemical reactions. In this work, we report in situ tracking of bond breaking and making of an up-standing melamine molecule chemisorbed on Cu(100) by subnanometer resolved tip-enhanced Raman spectroscopy (TERS). We demonstrate a vertical detection depth of about 4 Å with spectral sensitivity at the single chemical-bond level, which allows us not only to justify the up-standing configuration involving a dehydrogenation process at the bottom upon chemisorption, but also to specify the breaking of top N-H bonds and the transformation to its tautomer during photon-induced hydrogen transfer reactions. Our results indicate the chemical and structural sensitivity of TERS for single-molecule recognition beyond flat-lying planar molecules, providing new opportunities for probing the microscopic mechanism of molecular adsorption and surface reactions at the chemical-bond level.

8.
Planta ; 250(2): 657-665, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31147828

RESUMO

MAIN CONCLUSION: The grapevine VvßVPE promoter is specifically expressed in the seed. The - 1306~- 1045 bp core region restricts expression in other tissues and organs. Vacuolar processing enzyme (VPE) is a cysteine proteinase regulating vacuolar protein maturation and executing programmed cell death (PCD) in plants. Vitis vinifera (Vv)ßVPE is a ß-type VPE showing seed-specific expression that processes seed proteins during ovule development. However, the regulation of the seed-specific gene expression is far from understood. In this study, we characterize VvßVPE promoter (pVvßVPE) from 12 seeded and seedless grape genotypes. 94.56% of the pVvßVPE coding sequence is consistent. Two ßVPE promoters were constructed and transformed into Arabidopsis thaliana via ß-glucuronidase (GUS) fused expression vectors, using cv. Pinot Noir and cv. Thompson as seed and seedless candidates. GUS staining in different tissues and organs revealed that VvßVPE expresses specifically in the embryo, including the cotyledon, hypocotyl and suspensor, but not in the leaf, stem, root or flowers of the seedling. Using promoter deletion analysis, we created four incomplete VvßVPE promoters and found each pVvßVPE deletion could drive GUS gene to express in seeds. Interestingly, seed specificity disappeared when the promoter missed the core - 1306~- 1045 bp region. All deletion promoters presenting various quantified GUS activities indicate that the region - 1704~- 1306 bp inhibits, and the region - 705~- 861 bp promotes gene expression of VvßVPE. Our results demonstrate that pVvßVPE is a seed-specific promoter in both seeded and seedless grapes. Moreover, the core region of pVvßVPE (- 1306~- 1045 bp) is the key one responsible for seed-specific expression.


Assuntos
Cisteína Endopeptidases/genética , Regiões Promotoras Genéticas/genética , Sementes/genética , Vitis/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Genes Reporter , Especificidade de Órgãos , Óvulo Vegetal/genética , Óvulo Vegetal/crescimento & desenvolvimento , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Plântula/genética , Plântula/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Vitis/crescimento & desenvolvimento
9.
Natl Sci Rev ; 6(6): 1169-1175, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34691995

RESUMO

The strong spatial confinement of a nanocavity plasmonic field has made it possible to visualize the inner structure of a single molecule and even to distinguish its vibrational modes in real space. With such ever-improved spatial resolution, it is anticipated that full vibrational imaging of a molecule could be achieved to reveal molecular structural details. Here we demonstrate full Raman images of individual vibrational modes at the ångström level for a single Mg-porphine molecule, revealing distinct characteristics of each vibrational mode in real space. Furthermore, by exploiting the underlying interference effect and Raman fingerprint database, we propose a new methodology for structural determination, which we have called 'scanning Raman picoscopy', to show how such ultrahigh-resolution spectromicroscopic vibrational images can be used to visually assemble the chemical structure of a single molecule through a simple Lego-like building process.

10.
PLoS Genet ; 14(12): e1007839, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30566447

RESUMO

MYB transcription factors are involved in many biological processes, including metabolism, development and responses to biotic and abiotic stresses. RADIALIS-LIKE SANT/MYB 1 (RSM1) belongs to a MYB-related subfamily, and previous transcriptome analysis suggests that RSM1 may play roles in plant development, stress responses and plant hormone signaling. However, the molecular mechanisms of RSM1 action in response to abiotic stresses remain obscure. We show that down-regulation or up-regulation of RSM1 expression alters the sensitivity of seed germination and cotyledon greening to abscisic acid (ABA), NaCl and mannitol in Arabidopsis. The expression of RSM1 is dynamically regulated by ABA and NaCl. Transcription factors ELONGATED HYPOCOTYL 5 (HY5) and HY5 HOMOLOG (HYH) regulate RSM1 expression via binding to the RSM1 promoter. Genetic analyses reveal that RSM1 mediates multiple functions of HY5 in responses of seed germination, post-germination development to ABA and abiotic stresses, and seedling tolerance to salinity. Pull-down and BiFC assays show that RSM1 interacts with HY5/HYH in vitro and in vivo. RSM1 and HY5/HYH may function as a regulatory module in responses to ABA and abiotic stresses. RSM1 binds to the promoter of ABA INSENSITIVE 5 (ABI5), thereby regulating its expression, while RSM1 interaction also stimulates HY5 binding to the ABI5 promoter. However, no evidence was found in the dual-luciferase transient expression assay to support that RSM enhances the activation of ABI5 expression by HY. In summary, HY5/HYH and RSM1 may converge on the ABI5 promoter and independently or somehow dependently regulate ABI5 expression and ABI5-downstream ABA and abiotic stress-responsive genes, thereby improving the adaption of plants to the environment.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas de Transporte/genética , Proteínas de Ligação a DNA , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Germinação/efeitos dos fármacos , Germinação/genética , Germinação/fisiologia , Modelos Biológicos , Proteínas Nucleares/genética , Pressão Osmótica , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Salinidade , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética
11.
Plant Cell Physiol ; 58(10): 1789-1800, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29016889

RESUMO

Many plant cells retain their totipotency when cultured in vitro. The regulation of shoot regeneration from in vitro culture involves a number of gene products, but the nature of the associated post-transcriptional events remains largely unknown. Here, the post-transcriptional regulator ARGONAUTE10 (AGO10), a protein which is specifically expressed in the explant during the period when pro-shoot apical meristems (SAMs) are forming, has been known to inhibit shoot regeneration. In in vitro cultured explants of the loss-of-function mutant ago10, a much larger than normal number of SAMs was formed and, in these, the stem cell marker genes WUSCHEL, CLAVATA3 and SHOOT MERISTEMLESS were all strongly expressed. AGO10 repressed the accumulation of the microRNAs miR165/166, thereby up-regulating a suite of HD-ZIP III genes. The overproduction of miR166 was shown to promote shoot regeneration, while the absence of miR165/166 message resulted in a blockage to shoot regeneration and only a partial rescue of the phenotype of the ago10 mutant. The major conclusion was that the shoot regeneration inhibition determined by AGO10 functions via the repression of miR165/166.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas Argonautas/metabolismo , MicroRNAs/metabolismo , Brotos de Planta/fisiologia , Regeneração/genética , Proteínas de Arabidopsis/genética , Proteínas Argonautas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/metabolismo , Meristema/genética , Meristema/crescimento & desenvolvimento , MicroRNAs/genética , Mutação/genética , Fenótipo , Brotos de Planta/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
12.
PLoS One ; 11(8): e0160945, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27551866

RESUMO

Vacuolar processing enzymes (VPEs) have received considerable attention due to their caspase-1-like activity and ability to regulate programmed cell death (PCD), which plays an essential role in the development of stenospermocarpic seedless grapes ovules. To characterize VPEs and the relationship between stenospermocarpic grapes and the VPE gene family, we identified 3 Vitis vinifera VPE genes (VvßVPE, VvγVPE, and VvδVPE) from the PN40024 grape genome and cloned the full-length complementary DNAs (cDNAs) from the 'Vitis vinifera cv. Pinot Noir' and 'Vitis vinifera cv. Thompson Seedless' varietals. Each of the VPEs contained a typical catalytic dyad [His (177), Cys (219)] and substrate binding pocket [Arg (112), Arg (389), Ser (395)], except that Ser (395) in the VvγVPE protein sequence was replaced with alanine. Phylogenetic analysis of 4 Arabidopsis thaliana and 6 Vitis vinifera VPEs revealed that the 10 VPEs form 3 major branches. Furthermore, the 6 grapevine VPEs share a similar gene structure, with 9 exons and 8 introns. The 6 grapevine VPEs are located on 3 different chromosomes. We also tested the enzymatic activity of recombinant VPEs expressed in the Pichia Pastoris expression system and found that the VvVPEs exhibit cysteine peptidase activity. Tissue-specific expression analysis showed that VvδVPE is only expressed in flowers, buds and ovules, that VvγVPE is expressed in various tissues, and that VvßVPE was expressed in roots, flowers, buds and ovules. The results of quantitative real-time PCR (qRT-PCR) suggested that VvßVPE in seeded grapes increased significantly at 30 days after full-bloom (DAF), close to the timing of endosperm abortion at 32 DAF. These results suggested that VvßVPE is related to ovule abortion in seedless grapes. Our experiments provide a new perspective for understanding the mechanism of stenospermocarpic seedlessness and represent a useful reference for the further study of VPEs.


Assuntos
Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Filogenia , Vitis/enzimologia , Clonagem Molecular , Cisteína Endopeptidases/biossíntese , Flores/enzimologia , Regulação da Expressão Gênica de Plantas , Sementes/enzimologia
13.
Chem Commun (Camb) ; 52(65): 10068-71, 2016 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-27458616

RESUMO

Nanosheet ZSM-5 zeolite with highly exposed (010) crystal planes demonstrates high reactivity and good anti-coking stability for the catalytic cracking of n-heptane, which is attributed to the synergy of high external surface area and acid sites, fully accessible channel intersection acid sites, and hierarchical porosity caused by the unique morphology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...