Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(2): 3056-3069, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35943652

RESUMO

The properties of leachate from refuse transfer stations (RTSs) in rural China were indefinite. In this study, a total of 14 leachate samples from RTSs in nine provinces of China were characterized for their pH, electric conductivity, chromaticity, concentration of organic substances, nitrogen distribution, volatile organic compounds (VOCs), organic phosphorous pesticide, and heavy metals. The structural composition of fluorescent dissolved organic matter (FDOM) was also determined. To evaluate the leachate pollution potential in this study, a leachate pollution index was derived and used. Chromium (Cr) was the most polluting heavy metal present in rural leachate. Ethanol and ethyl acetate were the most frequently detected VOCs at high concentrations. Three-dimensional fluorescence excitation-emission matrix spectra were used to characterize the FDOM. Three components, tryptophan (C1), tyrosine-like (C2), and humic acid- and fulvic acid-like (C3) substances, were identified from all 14 samples. Tryptophan was the major component of FDOM and present in 45.7% of the samples by calculating the fluorescence intensity percentage, on average. Pearson correlations revealed that the fluorescence intensity of C1 and C3 was strongly related to soluble chemical oxygen demand and dissolved oxygen carbon, while C2 had significant positive correlations with ammonia nitrogen and total phosphorus of the solid waste. This study provided detailed data and findings that could serve as a preliminary basis for broadening options for the treatment and management of leachate from rural RTSs in China.


Assuntos
Metais Pesados , Compostos Orgânicos Voláteis , Triptofano , Análise da Demanda Biológica de Oxigênio , Matéria Orgânica Dissolvida , China , Nitrogênio/análise , Espectrometria de Fluorescência/métodos , Substâncias Húmicas/análise , Análise Fatorial
2.
RSC Adv ; 12(35): 22760-22769, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36105956

RESUMO

Biochar has attracted great interest in both CO2 capture and supercapacitor applications due to its unique physicochemical properties and low cost. Fabrication of eco-friendly and cost-effective biochar from high potential biomass Tenebrio molitor feces can not only realize the functional application of waste, but also a potential way of future carbon capture and energy storage technology. In this study, a novel KOH activation waste-fed Tenebrio molitor feces biochar (TMFB) was developed and investigated in terms of CO2 capture and electrochemical performance. When activated at 700 °C for 1 h, the specific surface area of the feces biochar (TMFB-700A) increased significantly from 232.1 to 2081.8 m2 g-1. In addition, well-developed pore distribution facilitates CO2 capture and electrolyte diffusion. TMFB-700A can quickly adsorb a large amount of CO2 (3.05 mol kg-1) with excellent recycling performance. TMFB-700A also exhibited promising electrochemical performance (335.8 F g-1 at 0.5 A g-1) and was used as electrode material in a symmetrical supercapacitor. It provided a high energy density of 33.97 W h kg-1 at a power density of 0.25 kW kg-1 with 90.47% capacitance retention after 10 000 charge-discharge cycles. All the results demonstrated that TMFB could be a potential bifunctional material and provided valuable new insights for Tenebrio molitor feces high-value utilization.

3.
Front Chem ; 10: 990321, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092653

RESUMO

Refuse transfer station (RTS) leachate treatment call for efficient methods to increase nutrient recovery (NH4 +-N and PO4 3--P) and chemical oxygen demand (COD) removal. In this study, the effects of various operational factors (seeding dose, pH, initial NH4 +-N concentration, and reaction time) on biochar-seeded struvite precipitation were investigated at laboratory and pilot scales. Mealworm frass biochar (MFB) and corn stover biochar (CSB) were used as seeding materials to compare with traditional seed struvite. The maximum NH4 +-N and PO4 3--P recover efficiency of the MFB-seeded process reached 85.4 and 97.5%, higher than non-seeded (78.5 and 88.0%) and CSB-seeded (80.5 and 92.0%) processes and close to the struvite-seeded (84.5 and 95.1%) process. The MFB-seeded process also exhibited higher COD removal capacity (46.4%) compared to CSB-seeded (35.9%) and struvite-seeded (31.2%) processes and increased the average particle size of the struvite product from 33.7 to 70.2 µm for better sustained release. XRD, FT-IR, and SEM confirmed the orthorhombic crystal structure with organic matter attached to the struvite product. A pilot-scale test was further carried out in a custom-designed stirred tank reactor (20 L). In the pilot-scale test, the MFB-seeded process still spectacularly recovered 77.9% of NH4 +-N and 96.1% of PO4 3--P with 42.1% COD removal, which was slightly lower than the laboratory test due to insufficient and uniform agitation. On the whole, MFB-seeded struvite precipitation is considered to be a promising pretreatment method for rural RTS leachate.

4.
Waste Manag ; 144: 153-162, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35366496

RESUMO

Fluorescence excitation-emission matrix (EEM) spectroscopy is a powerful tool to characterize DOM that interacts with heavy metals in MSWI bottom ash (IBA). Here, two fresh IBA samples collected from large MSWI plants were subjected to 33 days of accelerated weathering. Carbon content and fluorescence characterization of DOM and leaching behavior of heavy metals (Cu, Ba, Cr, Ni, and oxyanions) were monitored during the weathering. The mineralogical and chemical properties of IBA during the weathering process were also characterized. EEM combined with parallel factor analysis showed that fluorescent DOM could be decomposed into humic-like (C1, C2) and tryptophan-like substances (C3), while the accelerated weathering process can be further divided into three phases. Fitted cubic polynomials described well the changes in the specific intensity of fluorescence components. Humification and freshness indexes and SUVA results suggested the leached DOM contained a higher proportion of condensed aromatic structures and/or conjugation of aliphatic chains post-weathering. The results also revealed that adsorption of humic-like substances onto neo-formed reactive surfaces occurred quickly in the early stage of accelerated weathering; thereafter, biodegradation of lower molecular mass-hydrophilic organic carbon fraction plays a vital role in further reduction of Cu and Cr leaching in subsequent weathering. Oxyanions (Mo and Sb) became more mobile after 3 days of accelerated weathering, but their leaching was effectively reduced after the weathering process. A novel method for an IBA weathering treatment combined with enhanced microbial degradation is proposed. These findings provide new and inspiration for improving accelerated weathering technology.


Assuntos
Cinza de Carvão , Metais Pesados , Carbono , Análise Fatorial , Substâncias Húmicas/análise , Espectrometria de Fluorescência/métodos
5.
ACS Appl Mater Interfaces ; 13(13): 15315-15323, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33760598

RESUMO

One two-dimensional Fe-based metal-organic framework (FeSC1) and one one-dimensional coordination polymer (FeSC2) have been solvothermally prepared through the reaction among FeSO4·7H2O, the tripodal ligand 4,4',4″-s-triazine-2,4,6-triyl-tribenzoate (H3TATB), and flexible secondary building blocks p/m-bis((1H-imidazole-1-yl)methyl)benzene (bib). Given that their abundant interlayer spaces and different coordination modes, two compounds have been employed as battery-type electrodes to understand how void space and different coordination modes affect their performances in three-electrode electrochemical systems. Both materials exhibit outstanding but different electrochemical performances (including distinct capacities and charge-transfer abilities) under three-electrode configurations, where the charge storage for each electrode material is mainly dominated by the diffusion-controlled section (i ∝ v0.5) through power-law equations. Additionally, the partial phase transformations to more stable FeOOH are also detected in the long-term cycling loops. After coupling with the capacitive carbon-based electrode to assemble into the semi-solid-state battery-supercapacitor-hybrid (sss-BSH) devices, the sss-FeSC1//AC BSH device delivers excellent capacitance, superior energy and power density, and longstanding endurance as well as the potential practical property.

6.
RSC Adv ; 11(24): 14347-14356, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35423965

RESUMO

Fluorescence excitation-emission matrix (EEM) spectroscopy is a powerful tool for characterizing dissolved organic matter (DOM), a key component of anaerobic digestion. In this study, the fluorescence characteristics of DOM during 55 days of anaerobic digestion of oil crop straw inoculated with rumen liquid were investigated. EEM spectroscopy coupled with parallel factor analysis (PARAFAC) showed that three major fluorescence components, tyrosine- (C1), humic- (C2) and tryptophan-like substances (C3), were identified in all DOM samples. The F max values of C1 and C3 increased rapidly during the first 5 d, decreased dramatically from day 5 to day 35, and then remained stable, while C2 was not biodegraded. The changes in the F max values of the fluorescence components reflected the biodegradation of lignin and/or embedded cellulose by rumen microorganisms. The changes in the Stokes shift of the fluorescence peak were readily explained by the variation in the hydrophobic/hydrophilic fraction distribution. The humidification index (HIX) and A : T ratio of the DOM decreased after 5 d and then increased gradually. Compared with the McKnight fluorescence index (MFI), the Y fluorescence index (YFI) was better able to track the evolution of the DOM. Correlation analysis of the different fluorescence indices (intensities) and absorbance indices was also carried out. The EEM-PARAFAC individual components, HIX and A : T ratio were conveniently used to characterize the degree of anaerobic conversion of the organic matter, and the peak at the Stokes shift of ∼1.0 µm-1 was used as one of the indicators showing the stabilization of anaerobic digestion. These findings may assist in developing fluorescence technology for monitoring the anaerobic digestion of crop straw.

7.
Acta Crystallogr C Struct Chem ; 76(Pt 1): 10-16, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31919302

RESUMO

With the rapid development of metal-organic frameworks (MOFs), a variety of MOFs and their derivatives have been synthesized and reported in recent years. Commonly, multifunctional aromatic polycarboxylic acids and nitrogen-containing ligands are employed to construct MOFs with fascinating structures. 4,4',4''-(1,3,5-Triazine-2,4,6-triyl)tribenzoic acid (H3TATB) and the bidentate nitrogen-containing ligand 1,3-bis[(imidazol-1-yl)methyl]benzene (bib) were selected to prepare a novel ZnII-MOF under solvothermal conditions, namely poly[[tris{µ-1,3-bis[(imidazol-1-yl)methyl]benzene}bis[µ3-4,4',4''-(1,3,5-triazine-2,4,6-triyl)tribenzoato]trizinc(II)] dimethylformamide disolvate trihydrate], {[Zn3(C24H12N3O6)2(C14H14N4)3]·2C3H7NO·3H2O}n (1). The structure of 1 was characterized by single-crystal X-ray diffraction, IR spectroscopy and powder X-ray diffraction. The properties of 1 were investigated by thermogravimetric and fluorescence analysis. Single-crystal X-ray diffraction shows that 1 belongs to the monoclinic space group Pc. The asymmetric unit contains three crystallographically independent ZnII centres, two 4,4',4''-(1,3,5-triazine-2,4,6-triyl)tribenzoate (TATB3-) anions, three complete bib ligands, one and a half free dimethylformamide molecules and three guest water molecules. Each ZnII centre is four-coordinated and displays a distorted tetrahedral coordination geometry. The ZnII centres are connected by TATB3- anions to form an angled ladder chain with large windows. Simultaneously, the bib ligands link ZnII centres to give a helical Zn-bib-Zn chain. Furthermore, adjacent ladders are bridged by Zn-bib-Zn chains to form a fascinating three-dimensional self-penetrated framework with the short Schläfli symbol 65·7·813·9·10. In addition, the luminescence properties of 1 in the solid state and the fluorescence sensing of metal ions in suspension were studied. Significantly, compound 1 shows potential application as a fluorescent sensor with sensing properties for Zr4+ and Cu2+ ions.

8.
ACS Appl Mater Interfaces ; 10(10): 9104-9115, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29446614

RESUMO

Synthesizing kinetically stable coordination polymers (CPs) through ligand functionalization can effectively improve their supercapacitive performances. Herein, we have successfully synthesized three novel and topological Co-CPs by varying the flexible N-donor ligand and inorganic anions, namely, interpenetrated [Co(HTATB)( o-bib)]·H2O, extended two-dimensional (2D) layered Co(HTATB)( m-bib)·2H2O, and three-dimensional (3D) Co(HTATB)( m-bib), where bib is the flexible N-donor bis((1 H-imidazol-1-yl)methyl)benzene linker (where o- and m- refer to ortho and meta positions, respectively) ligand and HTATB is the partial deprotonation mode from 4,4',4″- s-triazine-2,4,6-triyl-tribenzoic acid. Various Co-CPs have been directly applied in the field of supercapacitors. All these framework materials exhibit high capacitance, excellent energy delivery efficiency, and good cycling performance. For instance, the maximum specific capacitance for penetrated 3D networks is 2572 F g-1 at 2.0 A g-1, and the mean energy delivery efficiency is up to 92.7% based on the tested current densities. Compared with extensional 2D layered and 3D networks, the 3D interpenetrated and polythreaded architectures could provide more active sites and thus promote fast charging and discharging processes. Furthermore, the Li+ uptake-release abilities of the Co-based CPs are also investigated, and the initial discharge capacity value for the 3D interpenetrated structures can reach up to 1792 mA h g-1 at a current density of 50 mA g-1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...