Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 394: 130285, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184087

RESUMO

The aim of this study was to reveal the mechanism by which co-inoculation with both Trichoderma viridis and Bacillus subtilis improved the efficiency of composting and degradation of lignocellulose in agricultural waste. The results showed that co-inoculation with Trichoderma and Bacillus increased abundance of Bacteroidota to promote the maturation 7 days in advance. Galbibacter may be a potential marker of co-inoculation composting efficiency compost. The compost became dark brown, odorless, and had a carbon to nitrogen ratio of 16.40 and a pH of 8.2. Moreover, Actinobacteriota and Firmicutes still dominated the degradation of lignocellulose following inoculation with Trichoderma or Bacillus 35 days after composting. Bacterial function prediction analysis showed that carbohydrate metabolism was the primary metabolic pathway. In conclusion, co-inoculation with Trichoderma and Bacillus shortened the composting cycle and accelerated the degradation of lignocellulose. These findings provide new strategies for the efficient use of agricultural waste to produce organic fertilizers.


Assuntos
Bacillus , Compostagem , Lignina , Trichoderma , Bacillus subtilis , Solo , Esterco
2.
Ecotoxicol Environ Saf ; 254: 114756, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36924595

RESUMO

Salinity stress hampers the growth of most crop plants and reduces yield considerably. In addition to its role in metabolism, γ-aminobutyric acid (GABA) plays a special role in the regulation of salinity stress tolerance in plants, though the underlying physiological mechanism remains poorly understood. In order to study the physiological mechanism of GABA pathway regulated carbon and nitrogen metabolism and tis relationship with salt resistance of maize seedlings, we supplemented seedlings with exogenous GABA under salt stress. In this study, we showed that supplementation with 0.5 mmol·L-1 (0.052 mg·g-1) GABA alleviated salt toxicity in maize seedling leaves, ameliorated salt-induced oxidative stress, and increased antioxidant enzyme activity. Applying exogenous GABA maintained chloroplast structure and relieved chlorophyll degradation, thus improving the photosynthetic performance of the leaves. Due to the improvement in photosynthesis, sugar accumulation also increased. Endogenous GABA content and GABA transaminase (GABA-T) and succinate semialdehyde dehydrogenase (SSADH) activity were increased, while glutamate decarboxylase (GAD) activity was decreased, via the exogenous application of GABA under salt stress. Meanwhile, nitrogen metabolism and the tricarboxylic acid (TCA) cycle were activated by the supply of GABA. In general, through the regulation of GABA-shunt metabolism, GABA activated enzymes related to nitrogen metabolism and replenished the key substrates of the TCA cycle, thereby improving the balance of carbon and nitrogen metabolism of maize and improving salt tolerance.


Assuntos
Ciclo do Ácido Cítrico , Plântula , Plântula/metabolismo , Zea mays/metabolismo , Ácido gama-Aminobutírico/farmacologia , Ácido gama-Aminobutírico/metabolismo , Antioxidantes/metabolismo , Carbono/metabolismo , Nitrogênio/farmacologia , Nitrogênio/metabolismo , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...