Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rice (N Y) ; 17(1): 37, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819744

RESUMO

BACKGROUND: Rice is one of the most important food crops in the world, and with the development of direct seeding methods for rice, exposure to anaerobic stress has become a major factor limiting its growth. RESULTS: In this experiment, we tested the tolerance to anaerobic germination of rice varieties NIP and HD84, and they were used as parents to construct a DH (doubled-haploid) population. The transcriptomes of NIP (highly tolerant) and HD86 (intolerant), and their progeny HR (highly tolerant) and NHR (intolerant) were sequenced from normal and anaerobic environments. The differentially-expressed genes (DEGs) were subjected to GO (Gene ontology), KEGG (Kyoto Encyclopedia of Genes and Genomes), and WGCNA analyses. QTL mapping of the DH population identified tolerance to anaerobic germination-related chromosomal segments. The transcriptome results from 24 samples were combined with the anaerobic stress QTL results for 159 DH population lines to construct a metabolic network to identify key pathways and a gene interaction network to study the key genes. Essential genes were initially subjected to rigorous functional validation, followed by a comprehensive analysis aimed at elucidating their potential utility in domestication and breeding practices, particularly focusing on the exploitation of dominant haplotypes. CONCLUSION: The results show that pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) are the starting signals of energy metabolism for coleoptile length growth, the auxin transporter EXPA is the determining signal for coleoptile length growth. The pivotal genes Os05g0498700 and Os01g0866100 exert a negative regulatory influence on coleoptile length, ultimately enhancing tolerance to anaerobic germination in rice. Analyses of breeding potential underscore the additional value of Os05g0498700-hyp2 and Os01g0866100-hyp2, highlighting their potential utility in further improving rice through breeding programs. The results of our study will provide a theoretical basis for breeding anaerobic-tolerant rice varieties.

2.
Nat Commun ; 15(1): 2014, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443411

RESUMO

Centrosymmetric-oxide/polydimethylsiloxane elastomers emit ultra-strong non-pre-irradiation mechanoluminescence under stress and are considered one of the most ideal mechanoluminescence materials. However, previous centrosymmetric-oxide/polydimethylsiloxane elastomers show severe mechanoluminescence degradation under stretching, which limits their use in applications. Here we show an elastomer based on centrosymmetric fluoride CaF2:Tb3+ and polydimethylsiloxane, with mechanoluminescence that can self-recover after each stretching. Experimentation indicates that the self-recoverable mechanoluminescence of the CaF2:Tb3+/polydimethylsiloxane elastomer occurs essentially due to contact electrification arising from contact-separation interactions between the centrosymmetric phosphors and the polydimethylsiloxane. Accordingly, a contact-separation cycle model of the phosphor-polydimethylsiloxane couple is established, and first-principles calculations are performed to model state energies in the contact-separation cycle. The results reveal that the fluoride-polydimethylsiloxane couple helps to induce contact electrification and maintain the contact-separation cycle at the interface, resulting in the self-recoverable mechanoluminescence of the CaF2:Tb3+/polydimethylsiloxane elastomer. Therefore, it would be a good strategy to develop self-recoverable mechanoluminescence elastomers based on centrosymmetric fluoride phosphors and polydimethylsiloxane.

3.
Inorg Chem ; 63(5): 2577-2585, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38244205

RESUMO

A bifunctional luminescent whitening and luminescent sensing composite material, BaMgAl12O17:Eu2+/polydimethylsiloxane (BAM/PDMS), that utilizes natural sunlight and mechanical energy is presented. By increasing the Eu2+ content, the photoluminescence (PL) excitation spectrum of the material shows a maximum redshift of 23 nm due to 5d level splitting of Eu2+, resulting in more spectral overlap with sunlight and an excellent PL whitening effect. Meanwhile, the self-recoverable mechanoluminescence (ML) of the material can be easily excited under mechanical stimuli due to contact electrification, exhibiting a unique stress sensing effect. Based on the unique features of PL whitening and ML sensing, the material is applied to model cars through a spray process, and the results demonstrate that the bifunctional BAM/PDMS material shows promising applications in automobile decoration.

4.
Nano Lett ; 21(9): 4129-4135, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33939439

RESUMO

Aqueous rechargeable zinc-iodine batteries (ZIBs) are promising candidates for grid energy storage because they are safe and low-cost and have high energy density. However, the shuttling of highly soluble triiodide ions severely limits the device's Coulombic efficiency. Herein, we demonstrate for the first time a double-layered cathode configuration with a conductive layer (CL) coupled with an adsorptive layer (AL) for ZIBs. This unique cathode structure enables the formation and reduction of adsorbed I3- ions at the CL/AL interface, successfully suppressing triiodide ion shuttling. A prototypical ZIB using a carbon cloth as the CL and a polypyrrole layer as the AL simultaneously achieves outstanding Coulombic efficiency (up to 95.6%) and voltage efficiency (up to 91.3%) in the aqueous ZnI2 electrolyte even at high-rate intermittent charging/discharging, without the need of ion selective membranes. These findings provide new insights to the design and fabrication of ZIBs and other batteries based on conversion reactions.

5.
Nat Commun ; 11(1): 590, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32001713

RESUMO

Hydrogen evolution reaction (HER) is more sluggish in alkaline than in acidic media because of the additional energy required for water dissociation. Numerous catalysts, including NiO, that offer active sites for water dissociation have been extensively investigated. Yet, the overall HER performance of NiO is still limited by lacking favorable H adsorption sites. Here we show a strategy to activate NiO through carbon doping, which creates under-coordinated Ni sites favorable for H adsorption. DFT calculations reveal that carbon dopant decreases the energy barrier of Heyrovsky step from 1.17 eV to 0.81 eV, suggesting the carbon also serves as a hot-spot for the dissociation of water molecules in water-alkali HER. As a result, the carbon doped NiO catalyst achieves an ultralow overpotential of 27 mV at 10 mA cm-2, and a low Tafel slope of 36 mV dec-1, representing the best performance among the state-of-the-art NiO catalysts.

6.
Chempluschem ; 81(12): 1305-1311, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31964070

RESUMO

Reduced graphene oxide (rGO)@MoS2 composites with a loose structure were prepared and added to poly(vinylidene fluoride) (PVDF) to form composites that showed superior microwave absorption and excellent electromagnetic interference shielding performances. The maximum reflection loss of the rGO@MoS2 /PVDF composites, with a low filling rate (only 5.0 wt %), can reach -43.1 dB at 14.48 GHz, and the frequency bandwidth below -10 dB is 3.6-17.8 GHz (in the frequency range of 2-18 GHz) with a thickness of 1-5 mm. Furthermore, rGO@MoS2 /PVDF composites with a higher filling rate (25 wt %) also exhibit outstanding electromagnetic interference shielding effectiveness, reaching a maximum at 27.9 dB. The mechanism of enhanced absorption and electromagnetic interference shielding performances were also studied in detail.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...