Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 17: 5565-5579, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36444199

RESUMO

Introduction: Second near-infrared photothermal therapy (NIR-II PTT) has become a promising strategy for treating cancer in terms of safety and potency. However, the application of NIR-II PTT was limited in the treatment of deep-buried solid tumors due to the low dose of NIR-II absorption nanomaterials and the inadequate laser energy in the deep tumor. Methods: Herein, the authors report the engineering of NIR-II absorbing polyaniline nanorods, termed HPW@PANI Nanorods, for in situ NIR-II PTT based on optical fibers transmission of laser power and transarterial infusion for the treatment of orthotopic hepatocellular carcinoma in the rabbit. HPW@PANI Nanorods were prepared via chemical oxidant polymerization of aniline under phosphotungstic acid, which exhibited effective NIR-II absorption for hyperthermia ablation cells. Results: HPW@PANI Nanorods were fast and efficiently deposited into primary orthotopic transplantation VX2 tumor in rabbits via transarterial infusion. Furthermore, an optical fiber was interventionally inserted into the primary VX2 tumor to transmit 1064nm laser energy for in situ NIR-II PTT, which could ablate primary tumor, inhibit distant tumor, and suppress peritoneal metastasis. Conclusion: This study provides new insights into the application of in situ NIR-II PTT based on optical fibers transmission of laser power and transarterial injection of NIR-II absorption nanomaterials to treat deep-buried tumors.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanotubos , Animais , Coelhos , Terapia Fototérmica , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Compostos de Anilina
2.
Rev Sci Instrum ; 89(12): 125121, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30599573

RESUMO

Accurate computed tomography (CT) reconstruction from incomplete projections is an important research topic. Sparse sampling and limited-angle sampling are two effective ways to reduce the X-ray radiation dose or the scanning time. However, it is technically complicated to realize sparse sampling in medical CT since the tube power or the pre-patient collimator is difficult to be switched frequently. Limited-angle sampling makes it difficult to reconstruct an accurate image. The developed multiple limited-angles (MLA) sampling scheme could well balance the technical implementation complexity and the CT reconstruction difficulty. It does not require frequent switching of the tube power or the pre-patient collimator. The data correlation of the acquired projections is lower than that in limited-angle sampling. Using the projections acquired by MLA sampling, CT images reconstructed by the total variation minimization (TVM) method suffer from shading artifacts. Because the artifacts are distributed in several fixed directions, the artifact-suppression reconstruction model based on multi-direction total variation was designed for MLA CT reconstruction in this work. The multi-direction total variation minimization (MDTVM) was utilized to solve the optimization model. Experiments on digital phantoms and real projections indicated that MDTVM can better suppress the shading artifacts than TVM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...