Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 17: 1186053, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37650098

RESUMO

Objectives: Cranial magnetic resonance imaging (MRI) could be a crucial tool for the assessment for neurological symptoms in patients with Wilson's disease (WD). Diffusion-weighted imaging (DWI) hyperintensity reflects the acute brain injuries, which mainly occur in specific brain regions. Therefore, this study aimed to develop a weighted cranial DWI scale for patients with WD, with special focus on specific brain regions. Materials and methods: In total, 123 patients with WD were enrolled, 118 of whom underwent 1.5 T-MRI on admission. The imaging score was calculated as described previously and depended on the following sequences: one point was acquired when abnormal intensity occurred in the T1, T2, and fluid-attenuation inversion recovery sequences, and two points were acquired when DWI hyperintensity were found. Consensus weighting was conducted based on the symptoms and response to treatment. Results: Intra-rater agreement were good (r = 0.855 [0.798-0.897], p < 0.0001). DWI hyperintensity in the putamen was a high-risk factor for deterioration during de-copper therapy (OR = 8.656, p < 0.05). The high-risk factors for readmission for intravenous de-copper therapies were DWI hyperintensity in the midbrain (OR = 3.818, p < 0.05) and the corpus callosum (OR = 2.654, p < 0.05). Both scoring systems had positive correlation with UWDRS scale (original semi-quantitative scoring system, r = 0.35, p < 0.001; consensus semi-quantitative scoring system, r = 0.351, p < 0.001.). Compared to the original scoring system, the consensus scoring system had higher correlations with the occurrence of deterioration (OR = 1.052, 95%CI [1.003, 1.0103], p < 0.05) and readmission for intravenous de-copper therapy (OR = 1.043, 95%CI [1.001, 1.086], p < 0.05). Conclusion: The predictive performance of the consensus semi-quantitative scoring system for cranial MRI was improved to guide medication, healthcare management, and prognosis prediction in patients with WD. For every point increase in the neuroimaging score, the risk of exacerbations during treatment increased by 5.2%, and the risk of readmission to the hospital within 6 months increased by 4.3%.

2.
Can J Physiol Pharmacol ; 98(5): 259-266, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31825666

RESUMO

Mitochondrial dysfunctions are responsible for myocardial injury upon ischemia/reperfusion (I/R), and mitochondrial E3 ubiquitin ligase 1 (Mul1) plays an important role in maintaining mitochondrial functions. This study aims to explore the function of Mul1 in myocardial I/R injury and the underlying mechanisms. The Sprague-Dawley rat hearts were subjected to 1 h of ischemia plus 3 h of reperfusion, which showed the I/R injury (increase in infarct size and creatine kinase release) and the elevated total and mitochondrial protein levels of Mul1 and p53 accompanied by the enhanced interactions between Mul1 and p53 as well as p53 and small a ubiquitin-like modifier (SUMO1). Consistently, hypoxia/reoxygenation (H/R) treated cardiac (H9c2) cells displayed cellular injury (apoptosis and necrosis), upregulation of total and mitochondrial protein levels of Mul1 and p53, and enhanced interactions between p53 and SUMO1 concomitant with mitochondrial dysfunctions (an increase in mitochondrial membrane potential and reactive oxygen species production with a decrease in ATP production); these phenomena were attenuated by knockdown of Mul1 expression. Based on these observations, we conclude that a novel role of Mul1 has been identified in the myocardial mitochondria, where Mul1 stabilizes and activates p53 through its function of SUMOylation following I/R, leading to p53-mediated mitochondrial dysfunction and cell death.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Regulação para Cima , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Técnicas de Silenciamento de Genes , Masculino , Potencial da Membrana Mitocondrial , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/genética , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética
3.
Eur J Pharmacol ; 822: 1-12, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29337194

RESUMO

Fasudil is a potent Rho-kinase (ROCK) inhibitor and can relax smooth muscle or cardiac muscle contraction through decreasing the phosphorylation level of myosin regulatory light chain (p-MLC20 or p-MLC2v), while p-MLC2v can function as a transcription factor to promote the NADPH oxidase 2 (NOX2) expression in rat hearts subjected to ischemia/reperfusion (I/R). This study aims to explore whether fasudil can protect the rat hearts against I/R oxidative injury through suppressing NOX2 expression via reduction of p-MLC2v level. The SD rat hearts were subjected to 1h-ischemia plus 3h-reperfusion, which showed myocardial injuries (myocardial fiber loss and disarray, increase of creatine kinase release and myocardial infarction/apoptosis), increase in ROCK activity and nuclear p-MLC2v level concomitant with up-regulation of NOX2 and H2O2 production; these phenomena were attenuated by fasudil in a dose-dependent manner. Next, we verified the cardioprotective effect of fasudil and the underlying mechanisms in hypoxia-reoxygenation (H/R) -treated H9c2 cells. Consistent with the results in vivo, the H/R-treated H9c2 cells showed cellular injury (increase in apoptotic ratio), elevation in ROCK activity and nuclear p-MLC2v level, accompanied by up-regulation of NOX2 and H2O2 production; these effects were blocked in the presence of fasudil in a dose-dependent way. Based on these observations, we conclude that beneficial effect of fasudil against myocardial I/R or H/R oxidative injury is related to the suppression of NOX2 expression through decrease of the p-MLC2v level. Our findings also highlight that intervention of MLC2v phosphorylation by drugs may provide a novel strategy to protect heart from I/R oxidative injury.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Coração/efeitos dos fármacos , Cadeias Leves de Miosina/metabolismo , NADPH Oxidase 2/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Miosinas Cardíacas/metabolismo , Linhagem Celular , Masculino , Miocárdio/patologia , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/patologia , Quinases Associadas a rho/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...