Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(39): 14173-14188, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37734066

RESUMO

Green biosurfactants are emerging as a promising area of research. However, there is a limited focus on the adsorption and wetting characteristics of biosurfactants on coal dust. This study explores the effects of sophorolipid (SL) biosurfactants on the microstructure and wettability of different coalification degree coal. The microstructure parameters of SL adsorbed on coal dust were measured using a surface tensiometer, contact angle analyzer, and particle size analyzer. The results indicate that SL has the lowest critical surface tension, leading to a 9.25° decrease in the contact angle for low-rank bituminous coal (YZ-LRBC). Furthermore, SL significantly altered the particle size distribution of lignite (NM-LC) and YZ-LRBC. The pore size structure of SL-infiltrated coal dust was quantified using a specific surface area analyzer, revealing a decrease in the specific surface area and an increase in the average pore size. The infrared analysis demonstrated that SL permeation significantly increased the percentage of hydrophilic functional groups (hydroxyl structures) while reducing the hydrophobic functional groups (aliphatic hydrocarbon and aromatic structure). Based on the measured microstructure parameters, a regression equation for contact angle was established: [contact angle (°)] = 73.800 - 0.860 × [D10 (nm)] + 4.280 × [specific surface area (m2/g)]. Notably, the characteristic particle size D10 had a significant negative effect on the contact angle, while the specific surface area had a significant positive effect. These findings provide a theoretical foundation for the application of biosurfactants in water injection to reduce dust and improve the wetting efficiency.

2.
Sensors (Basel) ; 21(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200320

RESUMO

Remote sensing (RS) is one of the data collection technologies that help explore more earth surface information. However, RS data captured by satellite are susceptible to particles suspended during the imaging process, especially for data with visible light band. To make up for such deficiency, numerous dehazing work and efforts have been made recently, whose strategy is to directly restore single hazy data without the need for using any extra information. In this paper, we first classify the current available algorithm into three categories, i.e., image enhancement, physical dehazing, and data-driven. The advantages and disadvantages of each type of algorithm are then summarized in detail. Finally, the evaluation indicators used to rank the recovery performance and the application scenario of the RS data haze removal technique are discussed, respectively. In addition, some common deficiencies of current available methods and future research focus are elaborated.

3.
J Plant Physiol ; 222: 103-112, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29425813

RESUMO

Drought stress is a considerable environmental factor that restrains photosynthesis. Lutein, the most prolific carotenoid in plant photosynthetic tissues, plays vital roles in the light-harvesting complexes. However, its biological functions under abiotic stresses remain unclear. In our research, transgenic tobacco plants were utilized to investigate the function of the tomato chloroplast-targeted carotenoid epsilon-ring hydroxylase (SlLUT1) in drought stress tolerance. The analysis of SlLUT1-pro-LUC and qRT-PCR showed that drought stress induced SlLUT1 expression. Transgenic tobacco plants exhibit higher lutein content than wild-type (WT) tobacco. Under drought stress, transgenic plants overexpressing SlLUT1 showed better growth performance, higher chlorophyll and relative water contents and more intact chloroplast and PSII supercomplex structures than WT tobacco. The Fv/Fm, Pn, NPQ, and content of D1 protein in transgenic plants were higher than those in WT plants under drought stress. The accumulation of H2O2 and O2- decreased in transgenic tobacco plants. Moreover, transgenic plants exhibited lower MDA accumulation and REL. These results indicate that overexpression of SlLUT1 enhances tolerance to drought stress by maintaining photosynthesis and scavenging ROS in transgenic tobacco.


Assuntos
Secas , Oxigenases de Função Mista/genética , Nicotiana/fisiologia , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/metabolismo , Oxigenases de Função Mista/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Estresse Fisiológico/genética , Nicotiana/genética
4.
Plant Cell Physiol ; 59(1): 58-71, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29069432

RESUMO

High temperature has become a major abiotic stress that limits crop productivity. Heat shock transcription factors (HSFs) and heat shock proteins (HSPs) play important roles in enhancing thermotolerance of plants. SUMOylation is an important post-translational modification in regulating cellular functions in eukaryotes. SIZ1, a well-characterized SUMO E3 ligase, mediates the process of SUMOylation. In this study, SUMO conjugations were clearly induced by high temperature. Overexpression of SIZ1 SUMO E3 ligase (SlSIZ1) in tomato could enhance the tolerance to heat stress in tomato. The RNA interference (RNAi) plants were more wilted than the wild type with heat treatment. Under heat stress, SlSIZ1 could decrease the accumulation of reactive oxygen species (ROS) and induce some genes of HSF and HSP transcription. Furthermore, overexpression of SlSIZ1 could increase the level of Hsp70 under high temperature. Yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays showed that SlSIZ1 could interact with SlHsfA1 to mediate the SUMOylation of SlHsfA1 and consequently enhance thermotolerance of tomato. In conclusion, overexpression of SlSIZ1 enhanced heat tolerance by regulating the activities of HsfA1 and increasing the content Hsp70.


Assuntos
Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Temperatura Alta , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Ubiquitina-Proteína Ligases/genética , Adaptação Fisiológica/genética , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Solanum lycopersicum/enzimologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico , Sumoilação , Ubiquitina-Proteína Ligases/metabolismo
5.
J Integr Plant Biol ; 59(2): 102-117, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27995772

RESUMO

SUMOylation is an important post-translational modification process that regulates different cellular functions in eukaryotes. SIZ/PIAS-type SAP and Miz1 (SIZ1) proteins exhibit SUMO E3 ligase activity, which modulates SUMOylation. However, SIZ1 in tomato has been rarely investigated. In this study, a tomato SIZ1 gene (SlSIZ1) was isolated and its molecular characteristics and role in tolerance to drought stress are described. SlSIZ1 was up-regulated by cold, sodium chloride (NaCl), polyethylene glycol (PEG), hydrogen peroxide (H2 O2 ) and abscisic acid (ABA), and the corresponding proteins were localized in the nucleus. The expression of SlSIZ1 in Arabidopsis thaliana (Arabidopsis) siz1-2 mutants partially complemented the phenotypes of dwarf, cold sensitivity and ABA hypersensitivity. SlSIZ1 also exhibited the activity of SUMO E3 ligase to promote the accumulation of SUMO conjugates. Under drought stress, the ectopic expression of SlSIZ1 in transgenic tobacco lines enhanced seed germination and reduced the accumulation of reactive oxygen species. SlSIZ1 overexpression conferred the plants with improved growth, high free proline content, minimal malondialdehyde accumulation and increased accumulation of SUMO conjugates. SlSIZ1 is a functional homolog of Arabidopsis SIZ1 with SUMO E3 ligase activity. Therefore, overexpression of SlSIZ1 enhanced the tolerance of transgenic tobacco to drought stress.


Assuntos
Adaptação Fisiológica , Secas , Nicotiana/genética , Nicotiana/fisiologia , Proteínas de Plantas/metabolismo , Solanum lycopersicum/enzimologia , Ubiquitina-Proteína Ligases/metabolismo , Ácido Abscísico/farmacologia , Adaptação Fisiológica/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Biologia Computacional , Teste de Complementação Genética , Germinação/efeitos dos fármacos , Resposta ao Choque Térmico/efeitos dos fármacos , Solanum lycopersicum/efeitos dos fármacos , Mutação/genética , Fenótipo , Plantas Geneticamente Modificadas , Transporte Proteico/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Transdução de Sinais/efeitos dos fármacos , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Estresse Fisiológico/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...