Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Australas Phys Eng Sci Med ; 39(1): 157-65, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26733050

RESUMO

The alcoholism can be detected by analyzing electroencephalogram (EEG) signals. However, analyzing multi-channel EEG signals is a challenging task, which often requires complicated calculations and long execution time. This paper proposes three data selection methods to extract representative data from the EEG signals of alcoholics. The methods are the principal component analysis based on graph entropy (PCA-GE), the channel selection based on graph entropy (GE) difference, and the mathematic combinations channel selection, respectively. For comparison purposes, the selected data from the three methods are then classified by three classifiers: the J48 decision tree, the K-nearest neighbor and the Kstar, separately. The experimental results show that the proposed methods are successful in selecting data without compromising the classification accuracy in discriminating the EEG signals from alcoholics and non-alcoholics. Among them, the proposed PCA-GE method uses only 29.69% of the whole data and 29.5% of the computation time but achieves a 94.5% classification accuracy. The channel selection method based on the GE difference also gains a 91.67% classification accuracy by using only 29.69% of the full size of the original data. Using as little data as possible without sacrificing the final classification accuracy is useful for online EEG analysis and classification application design.


Assuntos
Eletroencefalografia/métodos , Processamento de Sinais Assistido por Computador , Estatística como Assunto , Algoritmos , Eletrodos , Entropia , Humanos , Análise de Componente Principal
2.
Adv Exp Med Biol ; 823: 143-57, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25381106

RESUMO

Most epileptic EEG classification algorithms are supervised and require large training datasets, that hinder their use in real time applications. This chapter proposes an unsupervised Multi-Scale K-means (MSK-means) MSK-means algorithm to distinguish epileptic EEG signals and identify epileptic zones. The random initialization of the K-means algorithm can lead to wrong clusters. Based on the characteristics of EEGs, the MSK-means MSK-means algorithm initializes the coarse-scale centroid of a cluster with a suitable scale factor. In this chapter, the MSK-means algorithm is proved theoretically superior to the K-means algorithm on efficiency. In addition, three classifiers: the K-means, MSK-means MSK-means and support vector machine (SVM), are used to identify seizure and localize epileptogenic zone using delay permutation entropy features. The experimental results demonstrate that identifying seizure with the MSK-means algorithm and delay permutation entropy achieves 4. 7 % higher accuracy than that of K-means, and 0. 7 % higher accuracy than that of the SVM.


Assuntos
Algoritmos , Eletroencefalografia/métodos , Epilepsia/fisiopatologia , Modelos Neurológicos , Entropia , Epilepsia/diagnóstico , Humanos , Convulsões/diagnóstico , Convulsões/fisiopatologia , Processamento de Sinais Assistido por Computador , Máquina de Vetores de Suporte
3.
Brain Inform ; 1(1-4): 19-25, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27747525

RESUMO

This paper proposes a novel horizontal visibility graph entropy (HVGE) approach to evaluate EEG signals from alcoholic subjects and controlled drinkers and compare with a sample entropy (SaE) method. Firstly, HVGEs and SaEs are extracted from 1,200 recordings of biomedical signals, respectively. A statistical analysis method is employed to choose the optimal channels to identify the abnormalities in alcoholics. Five group channels are selected and forwarded to a K-Nearest Neighbour (K-NN) and a support vector machine (SVM) to conduct classification, respectively. The experimental results show that the HVGEs associated with left hemisphere, [Formula: see text]1, [Formula: see text]3 and FC5 electrodes, of alcoholics are significantly abnormal. The accuracy of classification with 10-fold cross-validation is 87.5 [Formula: see text] with about three HVGE features. By using just optimal 13-dimension HVGE features, the accuracy is 95.8 [Formula: see text]. In contrast, SaE features associated cannot identify the left hemisphere disorder for alcoholism and the maximum classification ratio based on SaE is just 95.2 [Formula: see text] even using all channel signals. These results demonstrate that the HVGE method is a promising approach for alcoholism identification by EEG signals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...