Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
1.
Langmuir ; 40(28): 14504-14514, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38951117

RESUMO

A critical constraint impeding the utilization of Mn-based oxide catalysts in NH3 selective catalytic reduction (NH3-SCR) is their inadequate resistance to water and sulfur. This vulnerability primarily arises from the propensity of SO2 to bind to the acidic site in manganese oxide, resulting in the formation of metal sulfate and leading to the irreversible deactivation of the catalyst. Therefore, gaining a comprehensive understanding of the detrimental impact of SO2 on the acidic sites and elucidating the underlying mechanism of this toxicity are of paramount importance for the effective application of Mn-based catalysts in NH3-SCR. Herein, we strategically modulate the acidity of the manganese oxide catalyst surface through the incorporation of Ce and Nb. Comprehensive analyses, including thermogravimetry, NH3 temperature-programmed desorption, in situ diffused reflectance infrared Fourier transform spectroscopy, and density functional theory calculations, reveal that SO2 exhibits a propensity for adsorption at strongly acidic sites. This mechanistic understanding underscores the pivotal role of surface acidity in governing the sulfur resistance of manganese oxide.

2.
Sci Rep ; 14(1): 15336, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961205

RESUMO

Confronted with the concurrent challenges of economic advancement and environmental management, this study explores whether implementing Intellectual Property Demonstration Policies (IPDP) can be a covert force in enhancing carbon emission efficiency. Utilizing panel data from 280 prefecture-level cities in China over the period 2007-2019, we employ a quasi-natural experimental design, incorporating multiple-period difference-in-differences models, mediation effect models, and spatial Durbin difference-in-differences models to assess the impacts of IPDP on carbon emission efficiency, its mechanisms of action, and its spatial spillover effects. The regression results of the multi-period difference-in-differences model reveal a statistically significant enhancement in carbon emission efficiency due to IPDP, with an impact coefficient of 0.044. Through heterogeneity tests, it is observed that the influence of IPDP on carbon emission efficiency varies based on regional characteristics, carbon emission levels, and the extent of marketization. The mediation effect model demonstrates that IPDP enhances carbon emission efficiency by fostering green technological innovation and facilitating the transformation of industrial structures. Furthermore, the spatial Durbin difference-in-differences model illustrates that IPDP positively influences the carbon emission efficiency of neighboring regions, indicating favorable spatial spillover effects. Notably, the indirect effect coefficients in the geographical distance matrix, economic distance matrix, and economic-geographical nested matrix are calculated as 0.673, 0.250, and 0.386, respectively. These findings offer compelling theoretical and empirical support for strengthening the intellectual property framework to optimize its environmental impact.

3.
Int Health ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38962866

RESUMO

Respiratory viruses contribute to high morbidity and mortality in Africa. In 2020, the Ohio State University's Global One Health Initiative, in collaboration with the Ethiopian Public Health Institute and the US Centers for Disease Control and Prevention, took action to strengthen Ethiopia's existing respiratory virus surveillance system through decentralization of laboratory testing and scale-up of national and regional capacity for detecting respiratory viruses. In August 2022, four regional laboratories were established, thereby raising the number of reference laboratories conducting respiratory virus surveillance to five. This article highlights lessons learned during implementation and outlines processes undertaken for laboratory scale-up and decentralization.

4.
Free Radic Biol Med ; 222: 386-396, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936518

RESUMO

Disturbance in iron homeostasis has been described in Parkinson's disease (PD), in which iron regulatory protein 2 (IRP2) plays a crucial role. IRP2 deletion resulted in the misregulation of iron metabolism and subsequent neurodegeneration. However, growing evidence showed that the levels of IRP2 were increased in the substantia nigra (SN) in MPTP-induced PD mice. To further clarify the role of increased IRP2 in PD, we developed IRP2-overexpressed mice by microinjecting AAV-Ireb2 in the SN. These mice showed decreased motor ability, abnormal gait and anxiety. Iron deposits induced by increased TFR1 and dopaminergic neuronal loss were observed in the SN. When these mice were treated with MPTP, exacerbated dyskinesia and dopaminergic neuronal loss were observed. In addition, TP53 was post-transcriptionally upregulated by IRP2 binding to the iron regulated element (IRE) in its 3' untranslated region. This resulted in increased lipid peroxidation levels and induced ferroptosis through the SLC7A11-ALOX12 pathway, which was independent of GPX4. This study revealed that IRP2 homeostasis in the SN was critical for PD progression and clarified the molecular mechanism of ferroptosis caused by IRP2.

5.
Vaccine ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38909000

RESUMO

INTRODUCTION: Standardizing case definitions for priority vaccine safety conditions facilitates uniform evaluation and consolidation of data obtained from different settings. The Brighton Collaboration case definitions (BCCD) were created to support this harmonization and enable classification from level 1 (most certain) to level 5 (not a case) of certainty. Assessing the performance of BCCD in practice is critical, particularly in resource-limited settings, where many new vaccines may be introduced without prior monitoring in high-income countries. We assessed the performance of BCCD in Addis Ababa, Ethiopia, as applicable to COVID-19 and other vaccines. METHODS: Active surveillance was conducted at Tikur Anbessa Specialized Hospital, the largest referral hospital in Ethiopia. During June 1, 2022-May 31, 2023, three trained physicians prospectively identified patients eligible for COVID-19 vaccination (regardless of vaccine receipt) who presented with one or more of eleven pre-specified adverse events of special interest (AESI) from the emergency department and inpatient wards. Standardized data collection forms were used to capture patient information and assign level of certainty (LOC), regardless of vaccination status for COVID-19. We conducted descriptive analysis to characterize cases and the LOCs reached for each AESI. RESULTS: We detected 203 AESI cases. The most detected conditions were thrombosis and thromboembolism (n = 100, 49 %) and generalized convulsions (n = 38, 19 %). Ninety-six percent of the cases were confirmed at levels 1-3 (n = 187) or level 5 (n = 9) LOC. Non-classifiable (level 4) cases were observed for pericarditis (n = 2), encephalitis (n = 2), myelitis (n = 2), and generalized convulsion (n = 1). CONCLUSION: The BCCD were successfully applied in > 95 % of cases in a large referral hospital in Ethiopia, with generalized convulsion, pericarditis, and encephalomyelitis as the exceptions. We recommend further evaluation in other low-resource settings, particularly in rural or non-referral hospitals, to gain additional insights into performance of these definitions for revision or adaptation, as needed.

6.
ACS Appl Mater Interfaces ; 16(24): 31738-31746, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38843175

RESUMO

Assembling two-dimensional van der Waals (vdW)-layered materials into heterostructures is an exciting development that sparked the discovery of rich correlated electronic phenomena. vdW heterostructures also offer possibilities for designer device applications in areas such as optoelectronics, valley- and spintronics, and quantum technology. However, realizing the full potential of these heterostructures requires interfaces with exceptionally low disorder which is challenging to engineer. Here, we show that thermal scanning probes can be used to create pristine interfaces in vdW heterostructures. Our approach is compatible at both the material- and device levels, and monolayer WS2 transistors show up to an order of magnitude improvement in electrical performance from this technique. We also demonstrate vdW heterostructures with low interface disorder enabling the electrical formation and control of quantum dots that can be tuned from macroscopic current flow to the single-electron tunneling regime.

7.
PLOS Glob Public Health ; 4(5): e0003175, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38781131

RESUMO

BACKGROUND: The COVID-19 pandemic is one of the most devastating public health emergencies of international concern to have occurred in the past century. To ensure a safe, scalable, and sustainable response, it is imperative to understand the burden of disease, epidemiological trends, and responses to activities that have already been implemented. We aimed to analyze how COVID-19 tests, cases, and deaths varied by time and region in the general population and healthcare workers (HCWs) in Ethiopia. METHODS: COVID-19 data were captured between October 01, 2021, and September 30, 2022, in 64 systematically selected health facilities throughout Ethiopia. The number of health facilities included in the study was proportionally allocated to the regional states of Ethiopia. Data were captured by standardized tools and formats. Analysis of COVID-19 testing performed, cases detected, and deaths registered by region and time was carried out. RESULTS: We analyzed 215,024 individuals' data that were captured through COVID-19 surveillance in Ethiopia. Of the 215,024 total tests, 18,964 COVID-19 cases (8.8%, 95% CI: 8.7%- 9.0%) were identified and 534 (2.8%, 95% CI: 2.6%- 3.1%) were deceased. The positivity rate ranged from 1% in the Afar region to 15% in the Sidama region. Eight (1.2%, 95% CI: 0.4%- 2.0%) HCWs died out of 664 infected HCWs, of which 81.5% were from Addis Ababa. Three waves of outbreaks were detected during the analysis period, with the highest positivity rate of 35% during the Omicron period and the highest rate of ICU beds and mechanical ventilators (38%) occupied by COVID-19 patients during the Delta period. CONCLUSIONS: The temporal and regional variations in COVID-19 cases and deaths in Ethiopia underscore the need for concerted efforts to address the disparities in the COVID-19 surveillance and response system. These lessons should be critically considered during the integration of the COVID-19 surveillance system into the routine surveillance system.

8.
Cancer Res ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809694

RESUMO

Pancreatic cancer (PDAC) harbors a complex tumor microenvironment (TME), and crosstalk between cells in the TME can contribute to drug resistance and relapse. Vasoactive intestinal peptide (VIP) is overexpressed in PDAC, and VIP receptors expressed on T cells are a targetable pathway that sensitizes PDAC to immunotherapy. In this study, we showed that pancreatic cancer cells engage in autocrine VIP signaling through VIP receptor 2 (VPAC2). High co-expression of VIP with VPAC2 correlated with reduced relapse-free survival in PDAC patients. VPAC2 activation in PDAC cells upregulated piwi-like RNA-mediated gene silencing 2 (Piwil2), which stimulated cancer cell clonogenic growth. In addition, VPAC2 signaling increased expression of TGF-ß1 to inhibit T cell function. Loss of VPAC2 on PDAC cells led to reduced tumor growth and increased sensitivity to anti-PD1 immunotherapy in mouse models of PDAC. Overall, these findings expand our understanding of the role of VIP/VPAC2 signaling in PDAC and provide the rationale for developing potent VPAC2-specific antagonists for treating PDAC patients.

9.
Nanomicro Lett ; 16(1): 197, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753176

RESUMO

Li metal batteries (LMBs) offer significant potential as high energy density alternatives; nevertheless, their performance is hindered by the slow desolvation process of electrolytes, particularly at low temperatures (LT), leading to low coulombic efficiency and limited cycle stability. Thus, it is essential to optimize the solvation structure thereby achieving a rapid desolvation process in LMBs at LT. Herein, we introduce branch chain-rich diisopropyl ether (DIPE) into a 2.5 M Li bis(fluorosulfonyl)imide dipropyl ether (DPE) electrolyte as a co-solvent for high-performance LMBs at - 20 °C. The incorporation of DIPE not only enhances the disorder within the electrolyte, but also induces a steric hindrance effect form DIPE's branch chain, excluding other solvent molecules from Li+ solvation sheath. Both of these factors contribute to the weak interactions between Li+ and solvent molecules, effectively reducing the desolvation energy of the electrolyte. Consequently, Li (50 µm)||LFP (mass loading ~ 10 mg cm-2) cells in DPE/DIPE based electrolyte demonstrate stable performance over 650 cycles at - 20 °C, delivering 87.2 mAh g-1, and over 255 cycles at 25 °C with 124.8 mAh g-1. DIPE broadens the electrolyte design from molecular structure considerations, offering a promising avenue for highly stable LMBs at LT.

10.
Am J Orthod Dentofacial Orthop ; 166(1): 81-91, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38661622

RESUMO

INTRODUCTION: This study aimed to perform a bibliometric analysis examining contributing countries and collaborative networks, authors and collaborative relationships, the performance of the institutions, and cocited journals and references in 3 major orthodontic journals (American Journal of Orthodontics and Dentofacial Orthopedics, European Journal of Orthodontics, and Angle Orthodontist) over two 10-year periods (2002-2011 and 2012-2021). METHODS: In this study, 4432 publications in the first decade and 4012 publications in the second decade were quantitatively analyzed and visualized using visualization software such as VOSviewer (Leiden University, Leiden, Netherlands), CiteSpace (Drexel University, Philadelphia, Pa), and Scimago Graphica (SCImago Lab, Spain). RESULTS: Institutions in the United States had the highest number of publications through the 2 decades, whereas Brazil, South Korea, and China achieved significant improvements in performance in the second decade compared with the first. Closer collaborative networks among scholars were revealed in the second decade. The cocitation analysis of the journals showed that highly cited journals included more professional orthodontic journals in the second decade than in the first decade. CONCLUSIONS: Bibliometric analysis of publications in 3 major orthodontic journals over two 10-year periods revealed a trend of diversification in countries and institutions participating in publishing, international collaborations, and collaboration networks among authors in the field of orthodontics during the 2 decades.


Assuntos
Bibliometria , Ortodontia , Publicações Periódicas como Assunto , Ortodontia/estatística & dados numéricos , Publicações Periódicas como Assunto/estatística & dados numéricos , Humanos , Editoração/estatística & dados numéricos , Fatores de Tempo
11.
BMC Ophthalmol ; 24(1): 203, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38684941

RESUMO

BACKGROUND: This study aims to investigate the morphologic features of the crystalline lens in Primary Angle Closure Disease (PACD) patients with zonular instability during cataract surgery using the swept-source CASIA 2 Anterior Segment-Optical Coherence Tomography (AS-OCT) system. METHODS: A total of 398 eyes (125 PACD eyes with zonular instability, 133 PACD eyes with zonular stability, and 140 cataract patient controls) of 398 patients who underwent cataract surgery combined or not glaucoma surgery between January 2021 and January 2023 were enrolled. The crystalline lens parameters were measured by CASIA2 AS-OCT. Then, logistic regression was performed to evaluate the risk factors associated with zonular instability. RESULTS: The results revealed that PACD eyes had a more anterior lens equator position, a steeper anterior curvature of lens, shorter Axial Length (AL), shallower Anterior Chamber Distance (ACD), higher Lens Vault (LV) and thicker Lens Thickness (LT), when compared to eyes in the cataract control group. Furthermore, PACD eyes in the zonular instability group had steeper front R, front Rs and Front Rf, flatter back Rf, thicker lens anterior part thickness, higher lens anterior-to-posterior part thickness ratios, shallower ACD, and greater LV, when compared to PACD eyes with zonular stability. The logistic regression analysis, which was adjusted for age and gender, revealed that zonular instability was positively correlated with anterior part thickness, lens anterior-to-posterior part thickness ratio, and LV, but was negatively correlated with lens anterior radius and ACD. CONCLUSION: Steeper anterior curvature, increased lens anterior part thickness, higher anterior-to-posterior part thickness ratio, shallower ACD, and greater LV are the anatomic features of PACD eyes associated with zonular instability.


Assuntos
Segmento Anterior do Olho , Glaucoma de Ângulo Fechado , Cristalino , Tomografia de Coerência Óptica , Humanos , Tomografia de Coerência Óptica/métodos , Glaucoma de Ângulo Fechado/fisiopatologia , Glaucoma de Ângulo Fechado/diagnóstico , Feminino , Masculino , Idoso , Pessoa de Meia-Idade , Segmento Anterior do Olho/diagnóstico por imagem , Segmento Anterior do Olho/patologia , Cristalino/diagnóstico por imagem , Cristalino/patologia , Estudos Retrospectivos , Pressão Intraocular/fisiologia , Acuidade Visual/fisiologia
12.
Inorg Chem ; 63(12): 5689-5700, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38485494

RESUMO

High-entropy oxides (HEOs) exhibit abundant structural diversity due to cationic and anionic sublattices with independence, rendering them superior in catalytic applications compared to monometallic oxides. Nevertheless, the conventional high-temperature calcination approach undermines the porosity and reduces the exposure of active sites (such as oxygen vacancies, OVs) in HEOs, leading to diminished catalytic efficiency. Herein, we fabricate a series of HEOs with a large surface area utilizing a microenvironment modulation strategy (m-NiMgCuZnCo: 86 m2/g, m-MnCuCoNiFe: 67 m2/g, and m-FeCrCoNiMn: 54 m2/g). The enhanced porosity in m-NiMgCuZnCo facilitates the presentation of numerous OVs, exhibiting an exceptional catalytic performance. This tactic creates inspiration for designing HEOs with rich porosity and active species with vast potential applications.

13.
Toxics ; 12(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38535963

RESUMO

Efficient removal of extremely mobile and toxic As(III) from water is a challenging but critical task. Herein, we developed a functionalized sorbent of chitosan nanofiber with iron-manganese (Fe-Mn@CS NF) using a one-step hybrid electrospinning approach to remove trace As(III) from water. Batch adsorption studies were performed to determine the adsorption efficiency under a variety of conditions, including contact time, starting concentration of As(III), ionic strength, and the presence of competing anions. The experimental results demonstrated that the concentration of As(III) dropped from 550 to less than 1.2 µg/L when using 0.5 g/L Fe-Mn@CS NF. This demonstrates the exceptional adsorption efficiency (99.8%) of Fe-Mn@CS NF for removing As(III) at pH 6.5. The kinetic tests revealed that the adsorption equilibrium was reached in 2.6 h, indicating a quick uptake of As(III). The ionic strength effect analysis showed that the adsorbed As(III) formed inner-sphere surface complexes with Fe-Mn@CS NF. The presence of SO42- or F- had a negligible impact on As(III) uptake, while the presence of PO43- impeded As(III) absorption by competing for adsorption sites. The exhausted sorbent could be effectively regenerated with a dilute NaOH solution. Even after 10 cycles of regenerating Fe-Mn@CS NF, the adsorption efficiency of As(III) in natural groundwater was maintained over 65%. XPS and FTIR analyses show that the presence of M-OH and C-O groups on the sorbent surface is essential for removing As(III) from water. Overall, our study highlights the significant potential of Fe-Mn@CS NF for the efficient and quick elimination of As(III) from water.

14.
PeerJ ; 12: e16914, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38406281

RESUMO

Background: Paphiopedilum armeniacum (P. armeniacum), an ornamental plant native to China, is known for its distinctive yellow blossoms. However, the mechanisms underlying P. armeniacum flower coloration remain unclear. Methods: We selected P. armeniacum samples from different flowering stages and conducted rigorous physicochemical analyses. The specimens were differentiated based on their chemical properties, specifically their solubilities in polar solvents. This key step enabled us to identify the main metabolite of flower color development of P. armeniacum, and to complete the identification by High-performance liquid chromatography (HPLC) based on the results. Additionally, we employed a combined approach, integrating both third-generation full-length transcriptome sequencing and second-generation high-throughput transcriptome sequencing, to comprehensively explore the molecular components involved. Results: We combined physical and chemical analysis with transcriptome sequencing to reveal that carotenoid is the main pigment of P. armeniacum flower color. Extraction colorimetric method and HPLC were used to explore the characteristics of carotenoid accumulation during flowering. We identified 28 differentially expressed carotenoid biosynthesis genes throughout the flowering process, validated their expression through fluorescence quantification, and discovered 19 potential positive regulators involved in carotenoid synthesis. Among these candidates, three RCP2 genes showed a strong potential for governing the PDS and ZDS gene families. In summary, our study elucidates the fundamental mechanisms governing carotenoid synthesis during P. armeniacum flowering, enhancing our understanding of this process and providing a foundation for future research on the molecular mechanisms driving P. armeniacum flowering.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Transcriptoma/genética , Perfilação da Expressão Gênica/métodos , Carotenoides/metabolismo , Flores/genética , China
15.
Sci Total Environ ; 921: 170877, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360310

RESUMO

The recovery of metals from solid waste for use as heterogeneous catalysts to activate peroxymonosulfate (PMS) for organic wastewater treatment is a promising, environmentally friendly and economical strategy. Herein, we present a facile and versatile strategy for upcycling copper (Cu) from waste printed circuit boards (PCBs) to Cu oxides supported on a three-dimensional carbon framework (10PCBs-Cu-TA) with the aid of tannic acid (TA). Compared to the PCBs-Cu synthesized without TA, introducing TA into 10PCBs-Cu-TA reduced Cu leaching, enhanced crystallinity, promoted electron transfer, and increased the number of oxygen vacancies. Moreover, 10PCBs-Cu-TA exhibited superior catalytic activity in activating PMS for the degradation of reactive brilliant blue KN-R, exceeding the activity of 10Cu-TA prepared using commercial Cu(NO3)2·3H2O. This enhanced performance may be attributed to the higher specific surface area and oxygen vacancies of 10PCBs-Cu-TA. The 10PCBs-Cu-TA/PMS system also exhibited broad catalytic universality and adaptability to various contaminants and water matrices. Quenching experiments, electron paramagnetic resonance analysis, and electrochemical measurements indicated that radical and non-radical processes jointly contributed to KN-R degradation. The proposed strategy for upcycling Cu from waste PCBs into functional materials provides novel insights into the utilization of solid waste and the development of PMS activators.

16.
Am J Orthod Dentofacial Orthop ; 165(4): 471-487, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38276931

RESUMO

INTRODUCTION: In many evidence-based approaches to orthodontic research, randomized controlled trials (RCTs) represent authoritative evidence to identify rational therapeutics. This study aimed to perform mappings of bibliometric networks on orthodontic RCTs and summarize visual characteristics between 1991 and 2022. METHODS: The articles were retrieved from the Web of Science Core Collection in October 2022 without an initial time limit. Only orthodontic RCTs were eligible. Some bibliometric tools (HistCite, VOSviewer, SCImago Graphica, and CiteSpace) were applied for visualized analysis. Data such as geography, productive institutions, hot articles, journals, authors, references, and keywords were extracted and summarized for analysis. RESULTS: A total of 1122 orthodontic RCTs were searched. A total of 3841 authors from 1157 institutions in 65 countries published orthodontic RCTs. The United States (149) was the most prolific country, and the University of Sao Paulo (35) was the most productive institution. The American Journal of Orthodontics and Dentofacial Orthopedics (206) was the most popular journal for scholars. The visualization results of keyword co-occurrence identified 5 clusters: (1) tooth movement and auxiliary measures, (2) appliances and oral health, (3) orthodontic discomfort and symptomatic therapy, (4) periodontal disease in orthodontics and health maintenance, and (5) retention and relapse. CONCLUSIONS: Over the past 31 years, publications and citations on orthodontic RCTs from the Web of Science Core Collection have increased notably across many countries, authors, and institutions. Recently, there has been a significant increase in the attention to orthodontic RCTs that focus on accelerating tooth movement.


Assuntos
Assistência Odontológica , Ortopedia , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Saúde Bucal , Bibliometria
17.
J Hazard Mater ; 466: 133605, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38286052

RESUMO

While land-based sources have been recognized as significant long-term sinks for micro- and nanoplastics, there is limited knowledge about the uptake, translocation, and phytotoxicity of nanoplastics (NPs) in terrestrial environments, especially aged NPs. In this study, we investigated the impact of aged polystyrene nanoplastics (PSNPs) on the uptake, physiology, and metabolism of spinach. Our findings revealed that both pristine and aged PSNPs can accumulate in the roots and subsequently translocate to the aboveground tissues, thereby influencing numerous key growth indicators in spinach plants. A more pronounced impact was observed in the treatment of aged PSNPs, triggering more significant and extensive changes in metabolite levels. Furthermore, alterations in targeted pathways, specifically aminoacyl-tRNA biosynthesis and phenylpropanoid biosynthesis, were induced by aged PSNPs, while pristine PSNPs influenced pathways related to sulfur metabolism, biosynthesis of unsaturated fatty acids, and tryptophan metabolism. Additionally, tissue-specific responses were observed at the metabolomics level in both roots and leaves. These results highlight the existence of diverse and tissue-specific metabolic responses in spinach plants exposed to pristine and aged PSNPs, providing insights into the mechanisms of defense and detoxification against NP-induced stress.


Assuntos
Microplásticos , Poliestirenos , Microplásticos/toxicidade , Poliestirenos/toxicidade , Spinacia oleracea , Metabolômica , Transporte Biológico
18.
Int J Antimicrob Agents ; 63(2): 107065, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38122947

RESUMO

The emergence of Acinetobacter baumannii infections as a significant healthcare concern in hospital settings, coupled with their association with poorer clinical outcomes, has prompted extensive investigation into novel therapeutic agents and innovative treatment strategies. Proguanil and chlorhexidine, both categorized as biguanide compounds, have displayed clinical efficacy as antimalarial and topical antibacterial agents, respectively. In this study, we conducted an investigation to assess the effectiveness of combining proguanil and chlorhexidine with clarithromycin or rifampicin against both laboratory strains and clinical isolates of A. baumannii. The combination therapy demonstrated rapid bactericidal activity against planktonic multidrug-resistant A. baumannii, exhibiting efficacy in eradicating mature biofilms and impeding the development of antibiotic resistance in vitro. Additionally, when administered in conjunction with clarithromycin or rifampicin, proguanil enhanced the survival rate of mice afflicted with intraperitoneal A. baumannii infections, and chlorhexidine expedited wound healing in mice with skin infections. These findings are likely attributable to the disruption of A. baumannii cell membrane integrity by proguanil and chlorhexidine, resulting in heightened membrane permeability and enhanced intracellular accumulation of clarithromycin and rifampicin. Overall, this study underscores the potential of employing proguanil and chlorhexidine in combination with specific antibiotics to effectively combat A. baumannii infections and improve treatment outcomes in clinically challenging scenarios.


Assuntos
Acinetobacter baumannii , Rifampina , Animais , Camundongos , Rifampina/farmacologia , Rifampina/uso terapêutico , Clorexidina/farmacologia , Clorexidina/uso terapêutico , Claritromicina/farmacologia , Claritromicina/uso terapêutico , Proguanil/farmacologia , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla
19.
Artigo em Inglês | MEDLINE | ID: mdl-37922463

RESUMO

High-entropy oxides (HEOs) are crucial in various fields (power storage/conversion, electronic devices, and catalysis) owing to their adjustable structural characteristics, fabulous stability, and massive components. However, the current strategies for synthesizing HEOs suffer from low surface area and limited active sites. Herein, we present a salt-assisted strategy with remarkable universality for the preparation of HEOs with high surface area [e.g., HP-(FeCrCoNiCu)xOy: 59 m2/g, HP-(ZnMgNiCuCo)xOy: 49 m2/g, and HP-(CrMnFeNiZn)xOy: 11 m2/g], where HP means high porosity. Especially, HP-(FeCrCoNiCu)xOy with rich-oxygen vacancies promotes catalytic efficiency for hydrocarbon and alcohol oxidation owing to its hierarchical texture and massive oxygen vacancies. Furthermore, density functional theory is utilized to well illustrate the relationship of the structure and catalytic efficiency within the catalysts. This work offers realistic pathway for the large-scale application of HEOs in catalytic areas.

20.
Front Bioeng Biotechnol ; 11: 1283129, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954018

RESUMO

ß-Alanine is the only naturally occurring ß-type amino acid in nature, and it is also one of the very promising three-carbon platform compounds that can be applied in cosmetics and food additives and as a precursor in the chemical, pharmaceutical and material fields, with very broad market prospects. ß-Alanine can be synthesized through chemical and biological methods. The chemical synthesis method is relatively well developed, but the reaction conditions are extreme, requiring high temperature and pressure and strongly acidic and alkaline conditions; moreover, there are many byproducts that require high energy consumption. Biological methods have the advantages of product specificity, mild conditions, and simple processes, making them more promising production methods for ß-alanine. This paper provides a systematic review of the chemical and biological synthesis pathways, synthesis mechanisms, key synthetic enzymes and factors influencing ß-alanine, with a view to providing a reference for the development of a highly efficient and green production process for ß-alanine and its industrialization, as well as providing a basis for further innovations in the synthesis of ß-alanine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...