Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene ; 830: 146502, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35483498

RESUMO

The stability of internal reference genes is crucial to the reliability of gene expression results using real-time fluorescence quantitative PCR (qRT-PCR). Inappropriate reference genes may lead to inaccurate results or even wrong conclusions. This study aims to identify stable reference genes for analyzing the expression of proliferation-related and differentiation-inducing genes in bovine primary preadipocytes (BPPs) in vitro. In this study, the stability of 16 candidate internal reference genes (GAPDH, ACTB, PPIA, LRP10, HPRT1, YWHAZ, B2M, TBP, EIF3K, RPS9, UXT, 18S rRNA, RPLP0, MARVELD, EMD and RPS15A) for qRT-PCR at proliferation and differentiation stages of BPPs was investigated by three different algorithms (geNorm, NormFinder and BestKeeper). The expression of two marker genes, PCNA and LPL, was used to determine the validity of the candidate reference genes (RGs) at the proliferation and differentiation stages, respectively. The results showed that GAPDH and RPS15A were the most stable RGs in the proliferation of bovine primary preadipocyte, while PPIA was the least stable internal reference gene. RPLP0 and EIF3K were the most stable RGs in the differentiation induction of bovine primary preadipocyte, while GAPDH was the least stable internal reference gene. This study of RGs laid the foundation for subsequent research into the mechanism of proliferation and differentiation of BPPs in vitro using qRT-PCR.


Assuntos
Algoritmos , Genes Essenciais , Animais , Bovinos , Proliferação de Células/genética , Perfilação da Expressão Gênica/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Padrões de Referência , Reprodutibilidade dos Testes
2.
Genes (Basel) ; 12(2)2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513983

RESUMO

The development of hair follicle in cashmere goats shows significant periodic change, as with mice and humans. However, for cashmere goat with double-coat, the periodic change may be due to other regulatory molecules and signal pathways. To understand the mechanism of periodic development of hair follicle, we performed a weighted gene coexpression network analysis (WGCNA) to mine key genes and establish an interaction network by utilizing the NCBI public dataset. Ten coexpression modules, including 7689 protein-coding genes, were constructed by WGCNA, six of which are considered to be significantly related to the development of the hair follicle cycle. A functional enrichment analysis for each model showed that they are closely related to ECM- receptor interaction, focal adhesion, PI3K-Akt signaling pathway, estrogen signaling pathway, and so on. Combined with the analysis of differential expressed genes, 12 hub genes from coexpression modules were selected as candidate markers, i.e., COL1A1, C1QTNF6, COL1A2, AQP3, KRTAP3-1, KRTAP11-1, FA2H, NDUFS5, DERL2, MRPL14, ANTKMT and XAB2, which might be applied to improve cashmere production.


Assuntos
Regulação da Expressão Gênica , Cabras/fisiologia , Folículo Piloso/crescimento & desenvolvimento , Folículo Piloso/metabolismo , Organogênese/genética , Transdução de Sinais , Animais , Biologia Computacional/métodos , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...