Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(30): 34413-34422, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32551472

RESUMO

Zirconium-based metal-organic frameworks (MOFs) have attracted interest due to their chemical and thermal stabilities and structural tunability. In this work, we demonstrate the tuning of the wettability of a UiO-66 structure via defect-engineering for efficient oil/water separation. UiO-66 crystals with controlled levels of missing-linker defects were synthesized using a modulation approach. As a result, the hydrophilicity of the defect-engineered UiO-66 (d-UiO-66) can be varied. In addition, a thin layer of hydrophilic d-UiO-66 was successfully fabricated on a series of stainless steel meshes (d-UiO-66@mesh), which exhibited excellent superhydrophilic and underwater superoleophobic properties and displayed interesting separation performance for various oil/water mixtures.

2.
Soft Matter ; 14(14): 2724-2734, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29565072

RESUMO

Air bubbles rising through an aqueous medium have been studied extensively and are routinely used for the separation of particulates via froth flotation, a key step in many industrial processes. Oil-coated bubbles can be more effective for separating hydrophilic particles with low affinity for the air-water interface, but the rise dynamics of oil-coated bubbles has not yet been explored. In the present work, we report the first systematic study of the shape and rise trajectory of bubbles engulfed in a layer of oil. Results from direct observation of the coated bubbles with a high-speed camera are compared to computer simulations and confirm a pronounced effect of the oil coat on the bubble dynamics. We consistently find that the oil-coated bubbles display a more spherical shape and straighter trajectory, yet slower rise than uncoated bubbles of comparable size. These characteristics may provide practical benefits for flotation separations with oil-coated bubbles.

3.
Langmuir ; 33(18): 4511-4519, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28422501

RESUMO

Surfactants can adsorb in fluid-fluid interfaces and lower the interfacial tension. Like surfactants, particles with appropriate wettability can also adsorb in fluid-fluid interfaces. Despite many studies of particle adsorption at fluid interfaces, some confusion persists regarding the ability of (simple, nonamphiphilic) particles to reduce the interfacial tension. In the present work, the interfacial activity of silica nanoparticles at air-water and hexadecane-water interfaces and of ethyl cellulose particles at the interface of water with trimethylolpropane trimethacrylate was analyzed through pendant drop tensiometry. Our measurements strongly suggest that the particles do significantly affect the interfacial tension provided that they have a strong affinity to the interface by virtue of their wettability and that no energy barrier to adsorption prevents them from reaching the interface. A simplistic model that does not explicitly account for any particle-particle interactions is found to yield surprisingly good predictions for the effective interfacial tension in the presence of the adsorbed particles. We further propose that interfacial tension measurements, when combined with information about the particles' wetting properties, can provide a convenient way to estimate the packing density of particles in fluid-fluid interfaces. These results may help to understand and control the assembly of nonamphiphilic nanoparticles at fluid-fluid interfaces, which is relevant to applications ranging from surfactant-free formulations and food technology to oil recovery.

4.
Bioresour Technol ; 159: 286-91, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24657760

RESUMO

Production of biodiesel from the transesterification between soybean oil and methanol was conducted in this study by a membrane reactor, in which ceramic membrane was packed with MCM-41 supported p-toluenesulfonic acid (PTSA). Box-Behnken design and response surface methodology (RSM) were used to investigate the effects of reaction temperature, catalyst amount and circulation velocity on the yield of biodiesel. A reduced cubic model was developed to navigate the design space. Reaction temperature was found to have most significant effect on the biodiesel yield while the interaction of catalyst amount and circulation velocity have minor effect on it. 80°C of reaction temperature, 0.27 g/cm(3) of catalyst amount and 4.15 mL/min of circulation velocity were proved to be the optimum conditions to achieve the highest biodiesel yield.


Assuntos
Benzenossulfonatos/química , Biocombustíveis , Reatores Biológicos , Biotecnologia/instrumentação , Biotecnologia/métodos , Membranas Artificiais , Dióxido de Silício/química , Análise de Variância , Catálise , Ésteres/química , Modelos Teóricos , Porosidade , Reciclagem , Óleo de Soja , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...