Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol Methods ; 314: 114676, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36669654

RESUMO

Foot-and-mouth disease (FMD) is a highly contagious and economically devastating disease of cloven-hoofed animals. Vaccination and surveillance against non-structure protein (NSP) are the most efficacious and cost-effective strategy to control this disease. Therefore, vaccine purity control is vital for successful prevention. Currently, vaccine purity is tested by an in-vivo test that recommended in the World Organization for Animal Health (WOAH), but it is time consuming and costly. Herein, we develop a double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) for quantitative detection of residual NSPs in inactivated FMD virus (FMDV) vaccines. In this assay, the monoclonal antibody 3A24 was selected as capture antibody and biotinylated 3B4B1 (Biotin-3B4B1) as detection antibody. A standard curve was developed using the NSP 3AB concentration versus OD value with the linear range of concentration of 2.5-160 ng/mL. The lowest limit of detection was 2.5 ng/mL. In addition, we determined 2.5 ng/mL of NSP as an acceptable threshold value of FMD vaccine purity using a dose-response experiment in cattle. The DAS-ELISA combined with the threshold value of FMD vaccine purity could provide a quick and simple tool for evaluation the antigenic purity of FMD vaccine during the manufacturing process.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Vacinas Virais , Animais , Bovinos , Vacinas de Produtos Inativados , Anticorpos Antivirais , Febre Aftosa/diagnóstico , Febre Aftosa/prevenção & controle , Ensaio de Imunoadsorção Enzimática/veterinária
2.
BMC Genomics ; 20(1): 125, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30744548

RESUMO

BACKGROUND: Cymbidium faberi, one of the most famous oriental orchids, has a distinct flower scent, which increases its economic value. However, the molecular mechanism of the flower scent biosynthesis was unclear prior to this study. Methyl jasmonate (MeJA) is one of the main volatile organic compounds (VOC) produced by the flowers of C. faberi. In this study, unigene 79,363 from comparative transcriptome analysis was selected for further investigation. RESULTS: A transcriptome comparison between blooming and withered flowers of C. faberi yielded a total of 9409 differentially expressed genes (DEGs), 558 of which were assigned to 258 pathways. The top ten pathways included α-linolenic acid metabolism, pyruvate metabolism and fatty acid degradation, which contributed to the conversion of α-linolenic acid to MeJA. One of the DEGs, jasmonic acid carboxyl methyltransferase (CfJMT, Unigene 79,363) was highly expressed in the blooming flower of C. faberi, but was barely detected in leaves and roots. Although the ectopic expression of CfJMT in tomato could not increase the MeJA content, the expression levels of endogenous MeJA biosynthesis genes were influenced, especially in the wound treatment, indicating that CfJMT may participate in the response to abiotic stresses. CONCLUSION: This study provides a basis for elucidating the molecular mechanism of flower scent biosynthesis in C. faberi, which is beneficial for the genetically informed breeding of new cultivars of the economically valuable oriental orchids.


Assuntos
Flores/metabolismo , Perfilação da Expressão Gênica , Metiltransferases/genética , Odorantes , Orchidaceae/genética , Orchidaceae/metabolismo , Orchidaceae/enzimologia , Orchidaceae/fisiologia , Regiões Promotoras Genéticas/genética , Estresse Fisiológico , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...