Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Crystallogr ; 45(Pt 3): 453-457, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22675230

RESUMO

Small-angle X-ray scattering (SAXS) was performed on single-crystal chemical vapor deposition (CVD) diamonds with low nitrogen concentrations, which were fabricated by microwave plasma-assisted chemical vapor deposition at high growth rates. High optical quality undoped 500 µm-thick single-crystal CVD diamonds grown without intentional nitrogen addition proved to be excellent as windows on SAXS cells, yielding parasitic scattering no more intense than a 7.5 µm-thick Kapton film. A single-crystal CVD diamond window was successfully used in a high-pressure SAXS cell.

2.
Biochim Biophys Acta ; 1820(7): 957-61, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22503923

RESUMO

BACKGROUND: In the cellular environment, macromolecules occupy about 30% of a cell's volume. In this crowded environment, proteins behave very differently than in dilute solution where scientists typically study the properties of proteins. For this reason, recent studies have investigated proteins in cell-like crowded conditions so as to understand if this changes their properties. The present study was performed to examine if molecular crowding impedes the protein unfolding process that is known to occur upon the application of high pressure. METHODS: Crowding of staphylococcal nuclease (SNase) was induced by dissolving low concentrations of SNase in high concentrations of crowding agents (16 wt.% or 25 wt.% PEG 3000 or 16 wt.% Dextran T10). SNase unfolding was then monitored via tryptophan fluorescence as pressure was applied. RESULTS: Fluorescence spectra can be decomposed into the sum of two components indicative, respectively, of native and unfolded states, and the center of spectral mass was then used as a measure of the degree of protein unfolding. It was found that SNase unfolding as a function of pressure was impeded in crowded solutions. These results suggest that crowded environments, such as those found in the cellular cytoplasm, may also impede high-pressure protein unfolding in cells. GENERAL SIGNIFICANCE: This is the first report on the effect of crowding on the pressure-induced unfolding of a protein (staphylococcal nuclease) monitored via tryptophan fluorescence.


Assuntos
Nuclease do Micrococo/química , Nuclease do Micrococo/metabolismo , Pressão , Dobramento de Proteína , Multimerização Proteica , Fluorescência , Cinética , Termodinâmica , Triptofano/química
3.
J Colloid Interface Sci ; 358(2): 497-505, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21463863

RESUMO

We explore two-dimensional self-assembly of tobacco mosaic viruses (TMVs) on a substrate-supported, fluid lipid monolayer by manipulating the electrostatic interactions, with specific focus on the effects of the cationic lipid concentration in the monolayer and the presence of Ca(2+) ions in the surrounding bulk solution. The TMV assemblies were characterized by grazing-incidence X-ray scattering and atomic force microscopy, and the inter-particle interaction quantified through X-ray scattering data analysis. In the absence of Ca(2+) ions, we found that higher charge densities on the lipid monolayer led to poorer in-plane order, which may be attributed to faster adsorption kinetics, due to the surface potential that increases with charge density. At the same time, higher lipid-charge densities also resulted in weaker repulsion between TMVs, due to partial screening of Coulomb repulsion by mobile cationic lipids in the monolayer. The lipid-charge dependence was diminished with increasing concentration of Ca(2+) ions, which also led to tighter packing of TMVs. The results indicate that Ca(2+) ions strengthen the screening of Coulomb repulsion between TMVs and consequently enhance the role of attractive forces. Control experiments involving Na(+) ions suggest that the attractive inter-TMV interaction has contributions from both the van der Waals force and the counter-ion-induced attraction that depends on ion valence.


Assuntos
Lipídeos/química , Eletricidade Estática , Vírus do Mosaico do Tabaco/química , Cálcio/química , Cátions , Microscopia de Força Atômica , Difração de Raios X
4.
J Synchrotron Radiat ; 18(Pt 2): 148-56, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21335900

RESUMO

Solution small-angle X-ray scattering (SAXS) measurements were obtained using a 128 × 128 pixel X-ray mixed-mode pixel array detector (MMPAD) with an 860 µs readout time. The MMPAD offers advantages for SAXS experiments: a pixel full-well of >2 × 10(7) 10 keV X-rays, a maximum flux rate of 10(8) X-rays pixel(-1) s(-1), and a sub-pixel point-spread function. Data from the MMPAD were quantitatively compared with data from a charge-coupled device (CCD) fiber-optically coupled to a phosphor screen. MMPAD solution SAXS data from lysozyme solutions were of equal or better quality than data captured by the CCD. The read-noise (normalized by pixel area) of the MMPAD was less than that of the CCD by an average factor of 3.0. Short sample-to-detector distances were required owing to the small MMPAD area (19.2 mm × 19.2 mm), and were revealed to be advantageous with respect to detector read-noise. As predicted by the Shannon sampling theory and confirmed by the acquisition of lysozyme solution SAXS curves, the MMPAD at short distances is capable of sufficiently sampling a solution SAXS curve for protein shape analysis. The readout speed of the MMPAD was demonstrated by continuously monitoring lysozyme sample evolution as radiation damage accumulated. These experiments prove that a small suitably configured MMPAD is appropriate for time-resolved solution scattering measurements.


Assuntos
Proteínas/ultraestrutura , Espalhamento a Baixo Ângulo , Difração de Raios X/métodos , Muramidase/efeitos da radiação , Muramidase/ultraestrutura , Soluções/química
5.
J Am Chem Soc ; 133(2): 172-5, 2011 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-21158438

RESUMO

Mesoporous silica with cubic symmetry has attracted interest from researchers for some time. Here, we present the room temperature synthesis of mesoporous silica nanoparticles possessing cubic Pm3n symmetry with very high molar ratios (>50%) of 3-aminopropyl triethoxysilane. The synthesis is robust allowing, for example, co-condensation of organic dyes without loss of structure. By means of pore expander molecules, the pore size can be enlarged from 2.7 to 5 nm, while particle size decreases. Adding pore expander and co-condensing fluorescent dyes in the same synthesis reduces average particle size further down to 100 nm. After PEGylation, such fluorescent aminated mesoporous silica nanoparticles are spontaneously taken up by cells as demonstrated by fluorescence microscopy.


Assuntos
Nanopartículas/química , Dióxido de Silício/química , Aminação , Estrutura Molecular , Tamanho da Partícula , Porosidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...