Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 175: 526-534, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33524483

RESUMO

Toxic compounds in pineapple peel waste hydrolysate (PPWH), namely formic acid, 5-hydroxymethylfurfural (HMF), and furfural, are the major predicament in its utilization as a carbon source for bacterial cellulose (BC) fermentation. A rapid detoxification procedures using atmospheric cold plasma (ACP) technique were employed to reduce the toxic compounds. ACP treatment allows the breakdown of toxic compounds without causing excessive breakdown of sugars. Herein, the performance of two available laboratory ACP reactors for PPWH detoxification was being demonstrated. ACP-reactor-1 (R1) runs on plasma power of 80-200 W with argon (Ar) plasma source, while ACP-reactor-2 (R2) runs at 500-600 W with air plasma source. Treatment in R1, at 200 W for 15 min, results in 74.06%, 51.38%, and 21.81% reduction of furfural, HMF, and formic acid. Treatment in R2 at 600 W gives 45.05%, 32.59%, and 60.41% reductions of furfural, HMF, and formic acid. The BC yield from the fermentation of Komagateibacter xylinus in the R1-treated PPWH, R2-treated PPWH, and untreated-PPWH is 2.82, 3.82, and 2.97 g/L, respectively. The results show that ACP treatment provides a novel detoxified strategy in achieving agricultural waste hydrolysate reuse in fermentation. Furthermore, the results also imply that untreated PPWH can be an inexpensive and sustainable resource for fermentation media supplementation.


Assuntos
Ananas/química , Celulose/síntese química , Gases em Plasma/química , Ananas/metabolismo , Bactérias/metabolismo , Celulose/metabolismo , Fermentação , Formiatos/química , Furaldeído/análogos & derivados , Furaldeído/química , Gluconacetobacter xylinus/metabolismo , Hidrólise , Hidrolisados de Proteína/química , Resíduos
2.
Food Sci Nutr ; 7(2): 834-843, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30847162

RESUMO

An immobilized enzyme system for bioconversion of Lo Han Kuo (LHK) mogrosides was established. ß-Glucosidase which was covalently immobilized onto the glass spheres exhibited a significant bioconversion efficiency from pNPG to pnitrophenol over other carriers. Optimum operational pH and temperature were determined to be pH 4 and 30°C. Results of storage stability test demonstrated that the glass sphere enzyme immobilization system was capable of sustaining more than 80% residual activity until 50 days, and operation reusability was confirmed for at least 10 cycles. The Michaelis constant (K m) of the system was determined to be 0.33 mM. The kinetic parameters, rate constant (K) at which Mogrosides conversion was determined, the τ 50 in which 50% of mogroside V deglycosylation/mogroside IIIE production was reached, and the τ complete of complete mogroside V deglycosylation/mogroside IIIE production, were 0.044/0.017 min-1, 15.6/41.1 min, and 60/120 min, respectively. Formation of the intermediates contributed to the kinetic differences between mogroside V deglycosylation and mogroside IIIE formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...