Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(5): 8561-8574, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36859968

RESUMO

With the development of remote sensing technology, true-color visualization of hyperspectral LiDAR echo signals has become a hotspot for both academic research and commercial applications. The limitation of the emission power of hyperspectral LiDAR causes the loss of spectral-reflectance information in some channels of the hyperspectral LiDAR echo signal. The color reconstructed based on the hyperspectral LiDAR echo signal is bound to have serious color cast problem. To solve the existing problem, a spectral missing color correction approach based on adaptive parameter fitting model is proposed in this study. Given the known missing spectral-reflectance band intervals, the colors in incomplete spectral integration are corrected to accurately restore target colors. Based on the experimental results, the color difference between color blocks and the hyperspectral image corrected by the proposed color correction model is smaller than that of the ground truth, and the image quality is higher, realizing the accurate reproduction of the target color.

2.
Front Neurosci ; 16: 1031505, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340788

RESUMO

We use the mobile phone camera as a new spectral imaging device to obtain raw responses of samples for spectral estimation and propose an improved sequential adaptive weighted spectral estimation method. First, we verify the linearity of the raw response of the cell phone camera and investigate its feasibility for spectral estimation experiments. Then, we propose a sequential adaptive spectral estimation method based on the CIE1976 L*a*b* (CIELAB) uniform color space color perception feature. The first stage of the method is to weight the training samples and perform the first spectral reflectance estimation by considering the Lab color space color perception features differences between samples, and the second stage is to adaptively select the locally optimal training samples and weight them by the first estimated root mean square error (RMSE), and perform the second spectral reconstruction. The novelty of the method is to weight the samples by using the sample in CIELAB uniform color space perception features to more accurately characterize the color difference. By comparing with several existing methods, the results show that the method has the best performance in both spectral error and chromaticity error. Finally, we apply this weighting strategy based on the CIELAB color space color perception feature to the existing method, and the spectral estimation performance is greatly improved compared with that before the application, which proves the effectiveness of this weighting method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...