Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37108751

RESUMO

Understanding plant-insect interactions requires the uncovering of the host plant use of insect herbivores, but such information is scarce for most taxa, including nocturnal moth species, despite their vital role as herbivores and pollinators. In this study, we determined the plant species visited by an important moth species, Spodoptera exigua, by analyzing attached pollen on migratory individuals in Northeast China. Pollen grains were dislodged from 2334 S. exigua long-distance migrants captured between 2019 and 2021 on a small island in the center of the Bohai Strait, which serves as a seasonal migration pathway for this pest species, and 16.1% of the tested moths exhibited pollen contamination, primarily on the proboscis. Subsequently, 33 taxa from at least 23 plant families and 29 genera were identified using a combination of DNA barcoding and pollen morphology, primarily from the Angiosperm, Dicotyledoneae. Moreover, the sex, inter-annual, and seasonal differences in pollen adherence ratio and pollen taxa were revealed. Notably, compared to previously reported pollen types found on several other nocturnal moths, we found that almost all of the above 33 pollen taxa can be found in multiple nocturnal moth species, providing another important example of conspecific attraction. Additionally, we also discussed the indicative significance of the pollen present on the bodies of migratory individuals for determining their migratory route. Overall, by delineating the adult feeding and pollination behavior of S. exigua, we advanced our understanding of the interactions of the moths with their host plants, and its migration pattern, as well as facilitated the design of (area-wide) management strategies to preserve and optimize ecosystem services that they provide.


Assuntos
Magnoliopsida , Mariposas , Animais , Spodoptera , Polinização , Ecossistema , Pólen/genética , Mariposas/genética , Plantas , Ásia Oriental
2.
Langmuir ; 28(25): 9535-42, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22650232

RESUMO

In this paper we report the fabrication of layered double hydroxide (LDH) nanoparticles/poly(N-isopropylacrylamide) (pNIPAM) ultrathin films (UTFs) via the layer-by-layer assembly technique, and their switchable electrocatalytic performance in response to temperature stimuli was demonstrated. X-ray diffraction and UV-vis absorption spectroscopy indicate a periodic layered structure with uniform and regular growth of the (LDH/pNIPAM)(n) UTFs; an interaction based on hydrogen bonding between LDH nanoparticles and pNIPAM was confirmed by X-ray-photoelectron spectroscopy and Fourier transform infrared spectroscopy. Temperature-triggered cyclic voltammetry and electrochemical impedance spectroscopy switch for the UTFs was obtained between 20 and 40 °C, accompanied by reversible changes in surface topography and film thickness revealed by atomic force microscopy and ellipsometry, respectively. The electrochemical on-off property of the temperature-controlled (LDH/pNIPAM)(n) UTFs originates from the contraction-expansion configuration of pNIPAM with low-high electrochemical impedance. In addition, a switchable electrocatalytic behavior of the (LDH/pNIPAM)(n) UTFs toward the oxidation of glucose was observed, resulting from the temperature-controlled charge transfer rate. Therefore, this work provides a facile approach for the design and fabrication of a well-ordered command interface with a temperature-sensitive property, which can be potentially applied in electrochemical sensors and switching.


Assuntos
Acrilamidas/química , Eletroquímica/métodos , Hidróxidos/química , Polímeros/química , Temperatura , Resinas Acrílicas , Catálise , Eletrodos , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular , Compostos de Estanho/química
3.
Protein Eng Des Sel ; 19(4): 169-73, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16452119

RESUMO

Horseradish peroxidase (HRP) was modified by maleic anhydride and citraconic anhydride. The thermal and organic solvent tolerances of native and modified enzyme were compared. These chemical modifications of HRP increased their thermostability both in aqueous buffer and some organic solvents, and also enhanced their tolerances of some organic solvents. We have studied the unfolding of native and modified HRP by heat to determine the conformational stability. The temperature at the midpoint of thermal denaturation (T(m)) was increased upon modification. Both enthalpy change (DeltaH(m)) and entropy change (DeltaS(m)) for unfolding of modified enzyme at T(m) were decreased compared with native enzyme. Circular dichroism studies proved that these modifications changed the conformation of HRP. The improvements of stability are related to side chain reorientations of aromatics upon both modifications.


Assuntos
Estabilidade Enzimática/efeitos dos fármacos , Peroxidase do Rábano Silvestre/química , Dicroísmo Circular , Anidridos Citracônicos/química , Dimetil Sulfóxido/farmacologia , Dimetilformamida/farmacologia , Furanos/farmacologia , Peroxidase do Rábano Silvestre/efeitos dos fármacos , Lisina/análogos & derivados , Lisina/química , Anidridos Maleicos/química , Conformação Proteica/efeitos dos fármacos , Solventes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA