Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(13): 9413-9427, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36928894

RESUMO

As a promising photovoltaic technology, halide perovskite solar cells (PSCs) have recently attracted wide attention. This work presents a systematic simulation of low bandgap formamidinium tin iodide (FASnI3)-based p-n heterojunction PSCs to investigate the effects of multiple optoelectronic variations on the photovoltaic performance. The structures of the simulated devices are n-i-p, electron transport layer-free (ETL-free), hole transport layer-free (HTL-free), and inverted HTL-free. The simulation is conducted with the Solar Cell Capacitance Simulator (SCAPS-1D). The power conversion efficiencies (PCEs) dramatically decrease when the acceptor doping density (NA) of the absorber layer exceeds 1016 cm-3. For all devices, the photovoltaic parameters dramatically decrease when the absorber defect density (Nt) is over 1015 cm-3, and the best absorber layer thickness is 1000 nm. It should be pointed out that the Nt and the interface defect layer (IDL) are the primary culprits that seriously affect the device performance. When the interfacial defect density (Nit) exceeds 1012 cm-3, PCEs begin to decline significantly. Therefore, paying attention to these defect layers is necessary to improve the PCE. Furthermore, the proper conduction band offset (CBO) between the electron transport layer (ETL) and absorber layer positively affects PSCs' performance. These simulation results help fabricate highly efficient and environment-friendly narrow bandgap PSCs.

2.
Med Image Comput Comput Assist Interv ; 14(Pt 3): 487-95, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22003735

RESUMO

As a minimally invasive surgery to treat left atrial (LA) fibrillation, catheter based ablation uses high radio-frequency energy to eliminate potential sources of the abnormal electrical events, especially around the ostia of pulmonary veins (PV). Due to large structural variations of the PV drainage pattern, a personalized LA model is helpful to translate a generic ablation strategy to a specific patient's anatomy. Overlaying the LA model onto 2D fluoroscopic images provides valuable visual guidance during surgery. A holistic shape model is not accurate enough to represent the whole shape population of the LA. In this paper, we propose a part based LA model (including the chamber, appendage, and four major PVs) and each part is a much simpler anatomical structure compared to the holistic one. Our approach works on un-gated C-arm CT, where thin boundaries between the LA blood pool and surrounding tissues are often blurred due to the cardiac motion artifacts (which presents a big challenge compared to the highly contrasted gated CT/MRI). To avoid segmentation leakage, the shape prior is exploited in a model based approach to segment the LA parts. However, independent detection of each part is not optimal and its robustness needs further improvement (especially for the appendage and PVs). We propose to enforce a statistical shape constraint during the estimation of pose parameters (position, orientation, and size) of different parts. Our approach is computationally efficient, taking about 1.5 s to process a volume with 256 x 256 x 250 voxels. Experiments on 469 C-arm CT datasets demonstrate its robustness.


Assuntos
Fibrilação Atrial/patologia , Diagnóstico por Imagem/métodos , Fluoroscopia/métodos , Átrios do Coração/patologia , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Modelos Estatísticos , Veias Pulmonares/patologia , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...