Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(5)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37241539

RESUMO

Microfluidic microparticle manipulation is currently widely used in environmental, bio-chemical, and medical applications. Previously we proposed a straight microchannel with additional triangular cavity arrays to manipulate microparticles with inertial microfluidic forces, and experimentally explored the performances within different viscoelastic fluids. However, the mechanism remained poorly understood, which limited the exploration of the optimal design and standard operation strategies. In this study, we built a simple but robust numerical model to reveal the mechanisms of microparticle lateral migration in such microchannels. The numerical model was validated by our experimental results with good agreement. Furthermore, the force fields under different viscoelastic fluids and flow rates were carried out for quantitative analysis. The mechanism of microparticle lateral migration was revealed and is discussed regarding the dominant microfluidic forces, including drag force, inertial lift force, and elastic force. The findings of this study can help to better understand the different performances of microparticle migration under different fluid environments and complex boundary conditions.

2.
Onco Targets Ther ; 11: 5689-5693, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30254461

RESUMO

PURPOSE: Sevoflurane is widely used in lung cancer surgery. It is well known that volatile anesthetics have a lung-protective effect in lung cancer surgery. However, the association between the inhibition of cancer cells and miRNAs interference remains unknown. Whether sevoflurane can affect some miRNAs in A549 cells has not been reported. The main aim of the present study was to investigate the effect of 3% sevoflurane on A549 cells and assess whether it regulates A549 cells by interfering with miRNA. METHODS: In three percent sevoflurane-pretreated A549 cells, treated for a duration of 30 minutes, the apoptosis rate of A549 cells was evaluated using a flow cytometer. The expression of 6 types of miRNAs associated with non-small cell lung cancer was analyzed by real-time quantitative polymerase chain reaction. RESULTS: An obvious apoptosis-promoting effect was found in A549 cells, which had been treated with 3% sevoflurane. The expression of several miRNAs that regulate apoptosis was significantly changed compared with the control group. CONCLUSION: Three percent sevoflurane can significantly increase the apoptosis rate of A549 cells, which may reduce the spread of cancer cells caused by operation. Sevoflurane disturbed the expression of the miRNAs that regulate apoptosis.

3.
Exp Neurol ; 261: 475-85, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25108066

RESUMO

The brainstem is well recognized as a critical site for integrating descending modulatory systems that both inhibit and facilitate pain at the level of the spinal cord. The cerebrospinal fluid-contacting nucleus (CSF-contacting nucleus) distributes and localizes in the ventral periaqueductal central gray of the brainstem. Although emerging lines of evidence suggest that the CSF-contacting nucleus may be closely linked to transduction and regulation of pain signals, the definitive role of the CSF-contacting nucleus in pain modulation remains poorly understood. In the present study, we determined the role of the CSF-contacting nucleus in rat nocifensive behaviors after persistent pain by targeted ablation of the CSF-contacting nucleus in the brainstem using the cholera toxin subunit B-saporin (CB-SAP), a cytotoxin coupled to cholera toxin subunit B. Compared with CB/SAP, CB-SAP induced complete ablation of the CSF-contacting nucleus, and the CB-SAP-treated rats showed hypersensitivity in responses to acute nociceptive stimulation, and exacerbated spontaneous nocifensive responses induced by formalin, thermal hyperalgesia and mechanical allodynia induced by plantar incision. Furthermore, immunohistochemical experiments showed that the CSF-contacting nucleus was a cluster of 5-HT-containing neurons in the brainstem, and the spinal projection of serotonergic axons originating from the CSF-contacting nucleus constituted the descending 5-HT pathway to the spinal cord. CB-SAP induced significant downregulation of 5-HT in the spinal dorsal horn, and intrathecal injection of 5-HT significantly reversed hypersensitivity in responses to acute nociceptive stimulation in the CB-SAP-treated rats. These results indicate that the CSF-contacting nucleus 5-HT pathway is an important component of the endogenous descending inhibitory system in the control of spinal nociceptive transmission.


Assuntos
Tronco Encefálico/patologia , Líquido Cefalorraquidiano , Dor/patologia , Transdução de Sinais , Medula Espinal/patologia , Animais , Toxina da Cólera , Modelos Animais de Doenças , Formaldeído/toxicidade , Frequência Cardíaca/efeitos dos fármacos , Masculino , Rede Nervosa/patologia , Rede Nervosa/fisiopatologia , Vias Neurais/metabolismo , Vias Neurais/fisiopatologia , Dor/etiologia , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Ratos , Ratos Sprague-Dawley , Respiração/efeitos dos fármacos , Proteínas Inativadoras de Ribossomos Tipo 1 , Saporinas , Serotonina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...