Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(3)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35160617

RESUMO

To overcome the recalcitrance of para-aramid textiles against dyeing, this study demonstrated that increasing the functionalities of soybean oil applied to the surface of para-aramids followed by a nonthermal plasma (NTP) treatment improved the dyeing color strength compared with the use of soybean oil alone, and that dyeing occurred through covalent bonding. Particularly, compared with the pretreatment using soybean oil that obtained the highest color strength of 3.89 (as K/S value determined from spectral analysis of the sample reflectance in the visible range), the present pretreatments with either acrylated epoxidized soybean oil (AESO) or a mixture of acrylic acid and soybean oil (AA/Soy) achieved K/S values higher than nine (>9.00). The NTP treatment, after the AESO or AA/Soy pretreatment, was essential in inducing the formation of a polymerized network on the surface of para-aramids that bonded the dye molecules and generating covalent bonds that anchored the polymerized network to the para-aramids, which is difficult to achieve given the high crystallinity and chemical inertness of para-aramids. As an important economic consideration, the sequential experimentation method demonstrated that a simple mixture of AA/Soy could replace the expensive AESO reagent and render a comparable performance in dyeing para-aramids. Among the auxiliary additives tested with the AESO and AA/Soy pretreatments followed by NPT treatment in this study, Polysorbate 80 as a surfactant negatively affected the dyeing, benzyl alcohol as a swelling agent had minimal effect, and NaCl as an electrolyte showed a positive effect. The dyeing method developed in this study did not compromise the strength of para-aramids.

2.
Nutrients ; 13(5)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065911

RESUMO

Lunasin has demonstrated antioxidative, anti-inflammatory, and chemopreventive properties. The objectives were to evaluate the concentration of lunasin in different lunasin-based commercial dietary supplements, to produce a lunasin-enriched soy extract (LESE) using a two-step pilot-plant-based ultrafiltration process, and to evaluate their biological potential in vitro. LESE was produced using 30 and 1 kDa membranes in a custom-made ultrafiltration skid. Lunasin was quantified in eight products and LESE. Lunasin concentrations of the lunasin-based products ranged from 9.2 ± 0.6 to 25.7 ± 1.1 mg lunasin/g protein. The LESE extract contained 58.2 mg lunasin/g protein, up to 6.3-fold higher lunasin enrichment than lunasin-based dietary supplements. Antioxidant capacity ranged from 121.5 mmol Trolox equivalents (TE)/g in Now® Kids to 354.4 mmol TE/g in LESE. Histone acetyltransferase (HAT) inhibition ranged from 5.3% on Soy Sentials® to 38.3% on synthetic lunasin. ORAC and lunasin concentrations were positively correlated, and HAT and lunasin concentrations were negatively correlated (p < 0.05). Melanoma B16-F10 and A375 cells treated with lunasin showed dose-dependent inhibitory potential (IC50 equivalent to 330 and 370 µM lunasin, respectively). Lunasin showed protein kinase B expression (57 ± 14%) compared to the control (100%) in B16-F10. Lunasin concentration found in commercial products and lunasin-enriched soy extract could exert benefits to consumers.


Assuntos
Suplementos Nutricionais , Alimentos de Soja , Proteínas de Soja/uso terapêutico , Antioxidantes/uso terapêutico , Cromatografia por Troca Iônica , Suplementos Nutricionais/análise , Humanos , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Alimentos de Soja/análise , Proteínas de Soja/análise , Glycine max
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...