Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 339
Filtrar
1.
Nat Commun ; 15(1): 5751, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982071

RESUMO

Oxygen vacancy (Ov) is an anionic defect widely existed in metal oxide lattice, as exemplified by CeO2, TiO2, and ZnO. As Ov can modify the band structure of solid, it improves the physicochemical properties such as the semiconducting performance and catalytic behaviours. We report here a new type of Ov as an intrinsic part of a perfect crystalline surface. Such non-defect Ov stems from the irregular hexagonal sawtooth-shaped structure in the (111) plane of trivalent rare earth oxides (RE2O3). The materials with such intrinsic Ov structure exhibit excellent performance in ammonia decomposition reaction with surface Ru active sites. Extremely high H2 formation rate has been achieved at ~1 wt% of Ru loading over Sm2O3, Y2O3 and Gd2O3 surface, which is 1.5-20 times higher than reported values in the literature. The discovery of intrinsic Ov suggests great potentials of applying RE oxides in heterogeneous catalysis and surface chemistry.

2.
Nat Commun ; 15(1): 5624, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965231

RESUMO

Graphene has been extensively utilized as an electrode material for nonaqueous electrochemical capacitors. However, a comprehensive understanding of the charging mechanism and ion arrangement at the graphene/electrolyte interface remain elusive. Herein, a gap-enhanced Raman spectroscopic strategy is designed to characterize the dynamic interfacial process of graphene with an adjustable number of layers, which is based on synergistic enhancement of localized surface plasmons from shell-isolated nanoparticles and a metal substrate. By employing such a strategy combined with complementary characterization techniques, we study the potential-dependent configuration of adsorbed ions and capacitance curves for graphene based on the number of layers. As the number of layers increases, the properties of graphene transform from a metalloid nature to graphite-like behavior. The charging mechanism shifts from co-ion desorption in single-layer graphene to ion exchange domination in few-layer graphene. The increase in area specific capacitance from 64 to 145 µF cm-2 is attributed to the influence on ion packing, thereby impacting the electrochemical performance. Furthermore, the potential-dependent coordination structure of lithium bis(fluorosulfonyl) imide in tetraglyme ([Li(G4)][FSI]) at graphene/electrolyte interface is revealed. This work adds to the understanding of graphene interfaces with distinct properties, offering insights for optimization of electrochemical capacitors.

3.
Inorg Chem ; 63(26): 12350-12359, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38887050

RESUMO

Hybrid metal halide materials with charming phase transition behaviors have attracted considerable attention. In former works, much attention has been focused on the phase transition triggered by the order-disorder or displacement motions of the organic component. However, manipulating the variation of the inorganic component to achieve the phase transition has rarely been reported. Herein, two novel organic-inorganic hybrid materials, [THPM]n[AgX2]n (THPM = 3,4,5,6-tetrahydropyrimidin-1-ium, X = I for 1 and Br for 2) with the [AgX2]nn- anionic chain structure, were synthesized. At 293 K, the [AgX2]nn- chains in 1 were constructed by the tetramer units of Ag atoms, while that in 2 was assembled by the dimer structure. Upon heating to 355 K, owing to the variation of the metallophilic interaction between adjacent Ag atoms, a unique transformation process from tetramer to dimer in [AgI2]nn- chains of 1 can be detected and endow 1 with a giant anisotropic thermal expansion with linear strain of ∼7% and shear strain of ∼20%, which can be used as a mechanical actuator for switching. Alternatively, for 2, no phase transition process can be observed upon the temperature variation. This work provides an effective approach to design phase transition materials triggered by the inorganic part.

4.
J Cardiothorac Surg ; 19(1): 344, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38907311

RESUMO

BACKGROUND: In this study we investigated the impact of ABC stroke score on the recurrence of paroxysmal atrial fibrillation (PAF) following radiofrequency catheter ablation (RFCA). METHODS: A total of 132 patients with PAF who underwent RFCA from October 2018 to September 2019 were included in this study. During the first phase of this study the patients were categorized into two groups based on late recurrence of atrial fibrillation after RFCA. In the second phase, the patients were further divided into two groups based on whether their ABC stroke score was ≥ 6.5. RESULT: The univariate analysis indicated that the risk factors for late recurrence of PAF included early recurrence, ABC stroke score, CHA2DS2-VASc score, and NT-proBNP (P < 0.05). Cox multivariate regression analysis revealed that ABC stroke score (P = 0.006) and early recurrence (P = 0.000) were independent predictors of late recurrence, and ABC stroke score ≥ 6.5 was a risk for predicting recurrence of PAF after RFCA with a sensitivity of 66.7% and specificity of 65.7%. After the completion of the 1:1 matching, the univariate Cox analysis indicated that an elevated score of ABC stroke (≥ 6.5) was an independent predictor of late recurrence of PAF (HR = 2.687, 95% CI: 1.036-6.971, P = 0.042). However, using an ABC stroke score cut off at 6.4 predicted the recurrence of atrial tachyarrhythmia with 85% sensitivity and 58.5% specificity. CONCLUSION: An ABC stroke score ≥ 6.4 is a predictor for late recurrence of PAF after RFCA.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Recidiva , Acidente Vascular Cerebral , Humanos , Fibrilação Atrial/cirurgia , Masculino , Feminino , Ablação por Cateter/efeitos adversos , Pessoa de Meia-Idade , Acidente Vascular Cerebral/etiologia , Fatores de Risco , Estudos Retrospectivos , Idoso , Medição de Risco/métodos , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/etiologia
5.
J Biol Chem ; 300(6): 107379, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38762184

RESUMO

Bacterial RecJ exhibits 5'→3' exonuclease activity that is specific to ssDNA; however, archaeal RecJs show 5' or 3' exonuclease activity. The hyperthermophilic archaea Methanocaldococcus jannaschii encodes the 5'-exonuclease MjRecJ1 and the 3'-exonuclease MjRecJ2. In addition to nuclease activity, archaeal RecJ interacts with GINS, a structural subcomplex of the replicative DNA helicase complex. However, MjRecJ1 and MjRecJ2 do not interact with MjGINS. Here, we report the structural basis for the inability of the MjRecJ2 homologous dimer to interact with MjGINS and its efficient 3' hydrolysis polarity for short dinucleotides. Based on the crystal structure of MjRecJ2, we propose that the interaction surface of the MjRecJ2 dimer overlaps the potential interaction surface for MjGINS and blocks the formation of the MjRecJ2-GINS complex. Exposing the interaction surface of the MjRecJ2 dimer restores its interaction with MjGINS. The cocrystal structures of MjRecJ2 with substrate dideoxynucleotides or product dCMP/CMP show that MjRecJ2 has a short substrate binding patch, which is perpendicular to the longer patch of bacterial RecJ. Our results provide new insights into the function and diversification of archaeal RecJ/Cdc45 proteins.


Assuntos
Proteínas Arqueais , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Cristalografia por Raios X , Methanocaldococcus/enzimologia , Methanocaldococcus/metabolismo , Ligação Proteica , Multimerização Proteica , DNA Helicases/metabolismo , DNA Helicases/química , DNA Helicases/genética , Modelos Moleculares , Exodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/química , Exodesoxirribonucleases/genética
6.
J Comput Chem ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760960

RESUMO

Theoretical modeling of the solid-state photocatalysis is one of the important issues as various useful photocatalysts have been developed to date. In this work, we investigated the mechanism of the alcohol photooxidation on niobium oxide (Nb2O5) which was experimentally developed, using the density functional theory (DFT)/time-dependent (TD)DFT calculations based on the cluster model. The alcohol adsorption and the first hydrogen transfer from hydroxy group to surface occur in the ground state, while the second hydrogen transfer from CH proceeds in the excited states during the photoirradiation of UV or visible light. The spin crossing was identified and the low-lying triplet states were solved for the reaction pathway. The photoabsorption in the visible light region was characterized as the charge transfer transition from O 2p of alcohol to Nb 4d of the Nb2O5 surface. The spin density and the natural population analysis indicated the generation of spin density in the moiety of carbonyl compound and its dissipation to the interface of the surface, which partly explains the electron paramagnetic resonance measurement. It was confirmed that the rate determining step is the desorption of carbonyl compound and water molecule in agreement with the experimental rate equation analysis. The present findings with the theoretical modeling will provide useful information for the further studies of the solid-state photocatalysis.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38603469

RESUMO

The electrochemical interface formed between an electrode and an electrolyte significantly affects the rate and mechanism of the electrode reaction through its structure and properties, which vary across the interface. The scope of the interface has been expanded, along with the development of energy electrochemistry, where a solid-electrolyte interphase may form on the electrode and the active materials change properties near the surface region. Developing a comprehensive understanding of electrochemical interfaces and interphases necessitates three-dimensional spatial resolution characterization. Atomic force microscopy (AFM) offers advantages of imaging and long-range force measurements. Here we assess the capabilities of AFM by comparing the force curves of different regimes and various imaging modes for in situ characterizing of electrochemical interfaces and interphases. Selected examples of progress on work related to the structures and processes of electrode surfaces, electrical double layers, and lithium battery systems are subsequently illustrated. Finally, this review provides perspectives on the future development of electrochemical AFM.

10.
Carbohydr Polym ; 332: 121884, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431405

RESUMO

The global healthcare challenge posed by COVID-19 necessitates the continuous exploration for novel antiviral agents. Fucoidans have demonstrated antiviral activity. However, the underlying structure-activity mechanism responsible for the inhibitory activity of fucoidans from Ascophyllum nodosum (FUCA) and Undaria pinnatifida (FUCU) against SARS-CoV-2 remains unclear. FUCA was characterized as a homopolymer with a backbone structure of repeating (1 â†’ 3) and (1 â†’ 4) linked α-l-fucopyranose residues, whereas FUCU was a heteropolysaccharide composed of Fuc1-3Gal1-6 repeats. Furthermore, FUCA demonstrated significantly higher anti-SARS-CoV-2 activity than FUCU (EC50: 48.66 vs 69.52 µg/mL), suggesting the degree of branching rather than sulfate content affected the antiviral activity. Additionally, FUCA exhibited a dose-dependent inhibitory effect on ACE2, surpassing the inhibitory activity of FUCU. In vitro, both FUCA and FUCU treatments downregulated the expression of pro-inflammatory cytokines (IL-6, IFN-α, IFN-γ, and TNF-α) and anti-inflammatory cytokines (IL-10 and IFN-ß) induced by viral infection. In hamsters, FUCA demonstrated greater effectiveness in attenuating lung and gastrointestinal injury and reducing ACE2 expression, compared to FUCU. Analysis of the 16S rRNA gene sequencing revealed that only FUCU partially alleviated the gut microbiota dysbiosis caused by SARS-CoV-2. Consequently, our study provides a scientific basis for considering fucoidans as poteintial prophylactic food components against SARS-CoV-2.


Assuntos
Ascophyllum , COVID-19 , Algas Comestíveis , Polissacarídeos , Undaria , Humanos , Ascophyllum/química , Enzima de Conversão de Angiotensina 2 , SARS-CoV-2 , RNA Ribossômico 16S , Undaria/química , Citocinas , Inflamação , Antivirais/farmacologia , Antivirais/uso terapêutico
11.
Cell ; 187(6): 1460-1475.e20, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38428423

RESUMO

Apelin is a key hormone in cardiovascular homeostasis that activates the apelin receptor (APLNR), which is regarded as a promising therapeutic target for cardiovascular disease. However, adverse effects through the ß-arrestin pathway limit its pharmacological use. Here, we report cryoelectron microscopy (cryo-EM) structures of APLNR-Gi1 complexes bound to three agonists with divergent signaling profiles. Combined with functional assays, we have identified "twin hotspots" in APLNR as key determinants for signaling bias, guiding the rational design of two exclusive G-protein-biased agonists WN353 and WN561. Cryo-EM structures of WN353- and WN561-stimulated APLNR-G protein complexes further confirm that the designed ligands adopt the desired poses. Pathophysiological experiments have provided evidence that WN561 demonstrates superior therapeutic effects against cardiac hypertrophy and reduced adverse effects compared with the established APLNR agonists. In summary, our designed APLNR modulator may facilitate the development of next-generation cardiovascular medications.


Assuntos
Receptores de Apelina , Fármacos Cardiovasculares , Desenho de Fármacos , Receptores de Apelina/agonistas , Receptores de Apelina/química , Receptores de Apelina/ultraestrutura , Microscopia Crioeletrônica , Proteínas de Ligação ao GTP/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Humanos , Fármacos Cardiovasculares/química
12.
Mol Cell ; 84(3): 570-583.e7, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38215752

RESUMO

Adhesion G protein-coupled receptors (aGPCRs) are evolutionarily ancient receptors involved in a variety of physiological and pathophysiological processes. Modulators of aGPCR, particularly antagonists, hold therapeutic promise for diseases like cancer and immune and neurological disorders. Hindered by the inactive state structural information, our understanding of antagonist development and aGPCR activation faces challenges. Here, we report the cryo-electron microscopy structures of human CD97, a prototypical aGPCR that plays crucial roles in immune system, in its inactive apo and G13-bound fully active states. Compared with other family GPCRs, CD97 adopts a compact inactive conformation with a constrained ligand pocket. Activation induces significant conformational changes for both extracellular and intracellular sides, creating larger cavities for Stachel sequence binding and G13 engagement. Integrated with functional and metadynamics analyses, our study provides significant mechanistic insights into the activation and signaling of aGPCRs, paving the way for future drug discovery efforts.


Assuntos
Antígenos CD , Receptores Acoplados a Proteínas G , Transdução de Sinais , Humanos , Adesão Celular , Microscopia Crioeletrônica , Complexo Glicoproteico GPIb-IX de Plaquetas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Antígenos CD/química , Antígenos CD/metabolismo
13.
Sci Total Environ ; 915: 169802, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38215839

RESUMO

In scenarios involving sudden releases of unidentified gases or concealed pollution emergencies, source control emerges as a critical procedure to safeguard residential air quality. Appropriate inverse source tracking methodology depending on diverse measurement data could be utilized to promptly identify pollutant source parameters. In this study, source term estimation (STE) method, i.e., jointly combining probability adjoint method with the Bayesian inference method, has been proposed. General form of the pollutant inverse transport equation was firstly established. Subsequently, the pollution source information, assumed from single continuous point releases during Fusion Field Trials 2007 under an unsteady wind field, was identified using the Bayesian inference probability adjoint inverse method. Metropolis-Hastings Markov Chain Monte Carlo (MH-MCMC) and Differential Evolution Markov Chain Monte Carlo (DE-MCMC) were then compared as sampling methods for Bayesian inference. Results indicated that the DE-MCMC algorithm has superior convergence and could present higher accuracy of pollutant source information than that of MH-MCMC algorithm, particularly for highly nonlinear and multi-modal distribution systems. Furthermore, the integration of Union standard Adjoint Location Probability (UALP) as prior information into the Bayesian inference probability adjoint inverse method effectively narrowed the sampling range, enhancing both the accuracy and robustness of the proposed approach. Finally, the impact of the covariance matrix on the inverse identification accuracy was explored. Overall, this research has provided insights into the future applicability of this Bayesian inference inversion technique for point source identification.

14.
Angiology ; 75(5): 462-471, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-36809222

RESUMO

We compared the efficacy and complication rates of quantitative radiofrequency ablation guided by ablation index (RFCA-AI) with those of second-generation cryoballoon ablation (CBA-2). Consecutive patients (n = 230) with symptomatic atrial fibrillation (AF) undergoing a first ablation CBA-2 (92 patients) or RFCA-AI (138 patients) procedure were enrolled in this study. The late recurrence rate in the CBA-2 group was higher than that in the RFCA-AI group (P = .012). Subgroup analysis showed the same result in patients with paroxysmal AF (PAF) (P = .039), but no difference was found in patients with persistent AF (P = .21). The average operation duration in the CBA-2 group (85 [75-99.5] minutes) was shorter than that in the RFCA-AI group (100 [84.5-120] minutes) (P < .0001), but the average exposure time (17.36(13.87-22.49) vs 5.49(4.00-8.24) minutes) in the CBA-2 group and X-ray dose (223.25(149.15-336.95) vs 109.15(80.75-168.7) mGym) were significantly longer than those in RFCA-AI group (P < .0001). Multivariate logistic regression analysis showed that left atrial diameter (LAD), early recurrence, and methods of ablation (cryoballoon ablation) were independent risk factors for late recurrence after AF ablation. Early recurrence of AF and LAD were independent risk factors for predicting late recurrence after AF ablation.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Criocirurgia , Humanos , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/cirurgia , Fibrilação Atrial/etiologia , Resultado do Tratamento , Criocirurgia/efeitos adversos , Criocirurgia/métodos , Átrios do Coração/cirurgia , Ablação por Cateter/efeitos adversos , Ablação por Cateter/métodos , Recidiva
15.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5830-5837, 2023 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-38114179

RESUMO

This study investigated the effect of Xiaoxuming Decoction(XXMD) on the activation of astrocytes after cerebral ischemia/reperfusion(I/R) injury. The model of cerebral IR injury was established using the middle cerebral artery occlusion method. Fluorocitrate(FC), an inhibitor of astrocyte activation, was applied to inhibit astrocyte activation. Rats were randomly divided into a sham group, a model group, a XXMD group, a XXMD+FC group, and a XXMD+Vehicle group. Neurobehavioral changes at 24 hours after cerebral IR injury, cerebral infarction, histopathological changes observed through HE staining, submicroscopic structure of astrocytes observed through transmission electron microscopy, fluorescence intensity of glial fibrillary acidic protein(GFAP) and thrombospondin 1(TSP1) measured through immunofluorescence, and expression of GFAP and TSP1 in brain tissue measured through Western blot were evaluated in rats from each group. The experimental results showed that neurobehavioral scores and cerebral infarct area significantly increased in the model group. The XXMD group, the XXMD+FC group, and the XXMD+Vehicle group all alleviated neurobehavioral changes in rats. The pathological changes in the brain were evident in the model group, while the XXMD group, the XXMD+FC group, and the XXMD+Vehicle group exhibited milder cerebral IR injury in rats. The submicroscopic structure of astrocytes in the model group showed significant swelling, whereas the XXMD group, the XXMD+FC group, and XXMD+Vehicle group protected the submicroscopic structure of astrocytes. The fluorescence intensity and protein expression of GFAP and TSP1 increased in the model group compared with those in the sham group. However, the XXMD group, the XXMD+FC group, and XXMD+Vehicle group all down-regulated the expression of GFAP and TSP1. The combination of XXMD and FC showed a more pronounced effect. These results indicate that XXMD can improve cerebral IR injury, possibly by inhibiting astrocyte activation and down-regulating the expression of GFAP and TSP1.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Ratos , Animais , Astrócitos , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Encéfalo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Infarto da Artéria Cerebral Média
16.
Nat Commun ; 14(1): 7620, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993467

RESUMO

Hydroxycarboxylic acids are crucial metabolic intermediates involved in various physiological and pathological processes, some of which are recognized by specific hydroxycarboxylic acid receptors (HCARs). HCAR2 is one such receptor, activated by endogenous ß-hydroxybutyrate (3-HB) and butyrate, and is the target for Niacin. Interest in HCAR2 has been driven by its potential as a therapeutic target in cardiovascular and neuroinflammatory diseases. However, the limited understanding of how ligands bind to this receptor has hindered the development of alternative drugs able to avoid the common flushing side-effects associated with Niacin therapy. Here, we present three high-resolution structures of HCAR2-Gi1 complexes bound to four different ligands, one potent synthetic agonist (MK-6892) bound alone, and the two structures bound to the allosteric agonist compound 9n in conjunction with either the endogenous ligand 3-HB or niacin. These structures coupled with our functional and computational analyses further our understanding of ligand recognition, allosteric modulation, and activation of HCAR2 and pave the way for the development of high-efficiency drugs with reduced side-effects.


Assuntos
Niacina , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Niacina/farmacologia , Ligantes , Transdução de Sinais , Regulação Alostérica , Sítio Alostérico
17.
Protein Sci ; 32(12): e4829, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37921047

RESUMO

Cyclic di-adenosine monophosphate (c-di-AMP) is a newly identified prokaryotic cyclic dinucleotide second messenger well elucidated in bacteria, while less studied in archaea. Here, we describe the enzymes involved in c-di-AMP metabolism in the hyperthermophilic archaeon Pyrococcus yayanosii. Our results demonstrate that c-di-AMP is synthesized from two molecules of ATP by diadenylate cyclase (DAC) and degraded into pApA and then to AMP by a DHH family phosphodiesterase (PDE). DAC can be activated by a wider variety of ions, using two conserved residues, D188 and E244, to coordinate divalent metal ions, which is different from bacterial CdaA and DisA. PDE possesses a broad substrate spectrum like bacterial DHH family PDEs but shows a stricter base selection between A and G in cyclic dinucleotides hydrolysis. PDE shows differences in substrate binding patches from bacterial counterparts. C-di-AMP was confirmed to exist in Thermococcus kodakarensis cells, and the deletion of the dac or pde gene supports that the synthesis and degradation of c-di-AMP are catalyzed by DAC and PDE, respectively. Our results provide a further understanding of the metabolism of c-di-AMP in archaea.


Assuntos
Archaea , Proteínas de Bactérias , Archaea/metabolismo , Proteínas de Bactérias/química , Bactérias/metabolismo , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Íons
18.
J Org Chem ; 88(22): 15783-15789, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37938999

RESUMO

The challenge of achieving regioselective multifunctionalization on highly symmetric C60 and C70 fullerenes persists as a significant hurdle. In this study, we present a novel approach involving the participation of an oriented external electric field (OEEF) to facilitate the regioselective formation of bisadducts in C60/C70 fullerenes. These products are obtained through consecutive Diels-Alder cycloaddition reactions. We constructed the field strength-barrier relationship and elucidated the OEEF-driven modulation mechanisms quantitatively. Leveraging the interplay between molecular dipoles and electric fields, the diverse reactions at distinct sites exhibit varying degrees of sensitivity to the applied electric fields, thereby leading to a pronounced regioselectivity in the bisaddition process. Our proposition suggests that the angle formed between the bonding direction (referred to as the reaction axis) and the external field can conveniently function as a predictive descriptor for the reactivity of different sites on the fullerene surface when subjected to electric fields.

19.
Nat Commun ; 14(1): 6851, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891176

RESUMO

Dual-interfacial structure within catalysts is capable of mitigating the detrimentally completive adsorption during the catalysis process, but its construction strategy and mechanism understanding remain vastly lacking. Here, a highly active dual-interfaces of CeO2-x/CoO1-x/Co is constructed using the pronounced interfacial interaction from surrounding small CeO2-x islets, which shows high activity in catalyzing the water-gas shift reaction. Kinetic evidence and in-situ characterization results revealed that CeO2-x modulates the oxidized state of Co species and consequently generates the dual active CeO2-x/CoO1-x/Co interface during the WGS reaction. A synergistic redox mechanism comprised of independent contribution from dual functional interfaces, including CeO2-x/CoO1-x and CoO1-x/Co, is authenticated by experimental and theoretical results, where the CeO2-x/CoO1-x interface alleviates the CO poison effect, and the CoO1-x/Co interface promotes the H2 formation. The results may provide guidance for fabricating dual-interfacial structures within catalysts and shed light on the mechanism over multi-component catalyst systems.

20.
Int J Ophthalmol ; 16(10): 1589-1594, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37854383

RESUMO

AIM: To evaluate the effectiveness of knock-down of heat shock protein 47 (HSP47) on conjunctival bleb scarring in a rat model and its possible mechanism. METHODS: Male Sprague-Dawley rats were used for glaucoma filtration surgery (GFS) and were treated with either phosphate buffered solution, shControl, mitomycin C, or sh-HSP47 using a microsyringe immediately after GFS. The morphology of filtering blebs was observed postoperatively. The levels of HSP47 were analyzed at 2, 5, 8, and 11d after GFS via real-time quantitative polymerase chain reaction (PCR) and Western blot. The silencing effect of HSP47, the expression of collagen I and III, and the potential signaling pathways of HSP47 during scarification were explored 11d post GFS. The protein levels of transforming growth factor-ß1 (TGF-ß1), phospho-Smad2 (pSmad2), phospho-Smad3 (p-Smad3), and phospho-p38 (p-p38) were also analyzed using Western blot. RESULTS: Sh-HSP47 treatment significantly prolonged the functional filtration bleb retention. The levels of HSP47 were increased significantly at 5, 8, and 11d postoperatively compared to the control group (P<0.05, P<0.01, and P<0.001). The levels of HSP47 protein at day 11 postoperatively were significantly down-regulated after HSP47 silencing using sh-HSP47 adenovirus transfection (P<0.01). Expression levels of collagen I and III within the blebs were significantly reduced in the absence of HSP47 (P<0.01). Moreover, the protein levels of TGF-ß1, p-Smad2/3, and p-p38 were dramatically inhibited after treatment with sh-HSP47 (P<0.01). CONCLUSION: The inhibitory effects of HSP47 knock-down on scarring after GFS have the potential to be an efficacious therapeutic option for the treatment of conjunctival bleb scarring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...