Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Small ; : e2402072, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773874

RESUMO

Prussian blue analogues (PBAs) exhibiting hollow morphologies have garnered considerable attention owing to their remarkable electrochemical properties. In this study, a one-pot strategy is proposed for the synthesis of MnFe PBA open cages. The materials are subsequently employed as cathode electrode in sodium-ion batteries (SIBs). The simultaneous evolution of structure, morphology, and performance during the synthesis process is investigated. The findings reveal substantial structural modifications as the reaction time is prolonged. The manganese content in the samples diminishes considerably, while the potassium content experiences an increase. This compositional variation is accompanied by a significant change in the spin state of the transition metal ions. These structural transformations trigger the occurrence of the Kirkendall effect and Oswald ripening, culminating in a profound alteration of the morphology of MnFe PBA. Moreover, the shifts in spin states give rise to distinct changes in their charge-discharge profiles and redox potentials. Furthermore, an exploration of the formation conditions of the samples and their variations before and after cycling is conducted. This study offers valuable insights into the intricate relationship between the structure, morphology, and electrochemical performance of MnFe PBA, paving the way for further optimizations in this promising class of materials for energy storage applications.

2.
Genes (Basel) ; 15(4)2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38674327

RESUMO

The aim of this study was to investigate targets through which Gualou Xiebai Banxia decoction aids in treating myocardial infarction (MI) using network pharmacology in combination with molecular docking. The principal active ingredients of Gualou Xiebai Banxia decoction were identified from the TCMSP database using the criteria of drug-likeness ≥30% and oral bioavailability ≥0.18. Interactions and pathway enrichment were investigated using protein-protein interaction (PPI) networks and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, respectively. Active component structures were docked with those of potential protein targets using AutoDock molecular docking relative softwares. HIF1A was of particular interest as it was identified by the PPI network, GO and KEGG pathway enrichment analyses. In conclusion, the use of network pharmacology prediction and molecular docking assessments provides further information on the active components and mechanisms of action Gualou Xiebai Banxia decoction.


Assuntos
Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Infarto do Miocárdio , Farmacologia em Rede , Mapas de Interação de Proteínas , Infarto do Miocárdio/tratamento farmacológico , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Mapas de Interação de Proteínas/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/química
3.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542459

RESUMO

The lipoxygenases (LOXs) are non-heme iron-containing dioxygenases that play an important role in plant growth and defense responses. There is scarce knowledge regarding the LOX gene family members and their involvement in biotic and abiotic stresses in potato. In this study, a total of 17 gene family members (StLOXs) in potato were identified and clustered into three subfamilies: 9-LOX type I, 13-LOX type I, and 13-LOX type II, with eleven, one, and five members in each subfamily based on phylogenetic analysis. By exploiting the RNA-seq data in the Potato Genome Sequencing Consortium (PGSC) database, the tissue-specific expressed and stress-responsive StLOX genes in double-monoploid (DM) potato were obtained. Furthermore, six candidate StLOX genes that might participate in drought and salt response were determined via qPCR analysis in tetraploid potato cultivars under NaCl and PEG treatment. Finally, the involvement in salt stress response of two StLOX genes, which were significantly up-regulated in both DM and tetraploid potato under NaCl and PEG treatment, was confirmed via heterologous expression in yeast under salt treatment. Our comprehensive analysis of the StLOX family provides a theoretical basis for the potential biological functions of StLOXs in the adaptation mechanisms of potato to stress conditions.


Assuntos
Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Filogenia , Tetraploidia , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica
4.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396758

RESUMO

The C3HC4 RING finger gene (RING-HC) family is a zinc finger protein crucial to plant growth. However, there have been no studies on the RING-HC gene family in potato. In this study, 77 putative StRING-HCs were identified in the potato genome and grouped into three clusters based on phylogenetic relationships, the chromosome distribution, gene structure, conserved motif, gene duplication events, and synteny relationships, and cis-acting elements were systematically analyzed. By analyzing RNA-seq data of potato cultivars, the candidate StRING-HC genes that might participate in tissue development, abiotic stress, especially drought stress, and anthocyanin biosynthesis were further determined. Finally, a StRING-HC gene (Soltu.DM.09G017280 annotated as StRNF4-like), which was highly expressed in pigmented potato tubers was focused on. StRNF4-like localized in the nucleus, and Y2H assays showed that it could interact with the anthocyanin-regulating transcription factors (TFs) StbHLH1 of potato tubers, which is localized in the nucleus and membrane. Transient assays showed that StRNF4-like repressed anthocyanin accumulation in the leaves of Nicotiana tabacum and Nicotiana benthamiana by directly suppressing the activity of the dihydroflavonol reductase (DFR) promoter activated by StAN1 and StbHLH1. The results suggest that StRNF4-like might repress anthocyanin accumulation in potato tubers by interacting with StbHLH1. Our comprehensive analysis of the potato StRING-HCs family contributes valuable knowledge to the understanding of their functions in potato development, abiotic stress, hormone signaling, and anthocyanin biosynthesis.


Assuntos
Antocianinas , Solanum tuberosum , Antocianinas/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Filogenia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regiões Promotoras Genéticas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Plants (Basel) ; 13(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276774

RESUMO

Polyamines and ethylene are key regulators of the growth and development, quality formation, and stress response of cereal crops such as rice. However, it remains unclear whether the application of these regulators could improve the nutritional quality via increasing amino acids in rice grains. This study examined the role of exogenous polyamines and ethylene in regulating amino acid levels in the milled rice of earlier-flowered superior grain (SG) and later-flowered inferior grain (IG). Two rice varieties were field grown, and either 1 mmol L-1 spermidine (Spd) or 50 µmol L-1 amino-ethoxyvinylglycine (AVG) was applied to panicles at the early grain-filling stage. The control check (CK) was applied with deionized water. The results showed that the Spd or AVG applications significantly increased polyamine (spermine (Spm) and Spd) contents and decreased ethylene levels in both SG and IG and significantly increased amino acid levels in the milled rice of SG and IG relative to the CK. Collectively, the application of Spd or AVG can increase amino acid-based nutritional quality and grain yield via increasing polyamine (Spm and Spd) contents and reducing ethylene levels in both SG and IG of rice.

6.
Foods ; 12(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38002232

RESUMO

The elevated anthocyanin content of colored potatoes produces numerous health benefits in humans. However, there is a paucity of studies exploring the influence of environmental factors on anthocyanin components in colored potatoes. In our work, the Box-Behnken design was adopted to optimize anthocyanin extraction from colored potato tubers with ultrasound assistance. The response surface model was stable and reliable (R2 = 0.9775), and under optimal extraction conditions, namely an ultrasonic power of 299 W, an extraction time of 10 min, and a solid-liquid ratio of 1:30 (g/mL), the yield reached 4.33 mg/g. Furthermore, the anthocyanins of colored potato tubers grown at different altitudes were determined by high-performance liquid chromatography-mass spectrometry with optimized ultrasound-assisted extraction, the results showed that anthocyanin levels were the highest at high altitudes, whereas anthocyanins were almost undetectable at mid-altitude. Moreover, the types of anthocyanin compounds present in colored potatoes varied at different altitudes. The red clones exhibited substantial accumulation of pelargonidin across all three altitudes. In contrast, the main anthocyanins found in purple clones were malvidin, petunidin, and cyanidin. We identified the anthocyanin components with a strong correlation to the environment, thereby establishing a fundamental basis for the breeding of potato clones with high anthocyanin content.

7.
Plants (Basel) ; 12(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37765407

RESUMO

Rice yield and grain quality are highly sensitive to salinity stress. Salt-tolerant/susceptible rice cultivars respond to salinity differently. To explore the variation in grain yield and quality to moderate/severe salinity stress, five rice cultivars differing in degrees of salt tolerance, including three salt-tolerant rice cultivars (Lianjian 5, Lianjian 6, and Lianjian 7) and two salt-susceptible rice cultivars (Wuyunjing 30 and Lianjing 7) were examined. Grain yield was significantly decreased under salinity stress, while the extent of yield loss was lesser in salt-tolerant rice cultivars due to the relatively higher grain filling ratio and grain weight. The milling quality continued to increase with increasing levels. There were genotypic differences in the responses of appearance quality to mild salinity. The appearance quality was first increased and then decreased with increasing levels of salinity stress in salt-tolerant rice but continued to decrease in salt-susceptible rice. Under severe salinity stress, the protein accumulation was increased and the starch content was decreased; the content of short branched-chain of amylopectin was decreased; the crystallinity and stability of the starch were increased, and the gelatinization temperature was increased. These changes resulted in the deterioration of cooking and eating quality of rice under severe salinity-stressed environments. However, salt-tolerant and salt-susceptible rice cultivars responded differently to moderate salinity stress in cooking and eating quality and in the physicochemical properties of the starch. For salt-tolerant rice cultivars, the chain length of amylopectin was decreased, the degrees of order of the starch structure were decreased, and pasting properties and thermal properties were increased significantly, whereas for salt-susceptible rice cultivars, cooking and eating quality was deteriorated under moderate salinity stress. In conclusion, the selection of salt-tolerant rice cultivars can effectively maintain the rice production at a relatively high level while simultaneously enhancing grain quality in moderate salinity-stressed environments. Our results demonstrate specific salinity responses among the rice genotypes and the planting of salt-tolerant rice under moderate soil salinity is a solution to ensure rice production in China.

8.
Sci Total Environ ; 896: 165294, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37414171

RESUMO

Significant advancements have been made in understanding the genetic regulation of nitrogen use efficiency (NUE) and identifying crucial NUE genes in rice. However, the development of rice genotypes that simultaneously exhibit high yield and NUE has lagged behind these theoretical advancements. The grain yield, NUE, and greenhouse gas (GHG) emissions of newly-bred rice genotypes under reduced nitrogen application remain largely unknown. To address this knowledge gap, field experiments were conducted, involving 80 indica (14 to 19 rice genotypes each year in Wuxue, Hubei) and 12 japonica (8 to 12 rice genotypes each year in Yangzhou, Jiangsu). Yield, NUE, agronomy, and soil parameters were assessed, and climate data were recorded. The experiments aimed to assess genotypic variations in yield and NUE among these genotypes and to investigate the eco-physiological basis and environmental impacts of coordinating high yield and high NUE. The results showed significant variations in yield and NUE among the genotypes, with 47 genotypes classified as moderate-high yield with high NUE (MHY_HNUE). These genotypes demonstrated the higher yields and NUE levels, with 9.6 t ha-1, 54.4 kg kg-1, 108.1 kg kg-1, and 64 % for yield, NUE for grain and biomass production, and N harvest index, respectively. Nitrogen uptake and tissue concentration were key drivers of the relationship between yield and NUE, particularly N uptake at heading and N concentrations in both straw and grain at maturity. Increase in pre-anthesis temperature consistently lowered yield and NUE. Genotypes within the MHY_HNUE group exhibited higher methane emissions but lower nitrous oxide emissions compared to those in the low to middle yield and NUE group, resulting in a 12.8 % reduction in the yield-scaled greenhouse gas balance. In conclusion, prioritizing crop breeding efforts on yield and resource use efficiency, as well as developing genotypes resilient to high temperatures with lower GHGs, can mitigate planetary warming.


Assuntos
Gases de Efeito Estufa , Oryza , Nitrogênio , Oryza/genética , Fertilizantes/análise , Melhoramento Vegetal , Solo , Agricultura/métodos , Óxido Nitroso/análise , Grão Comestível/química , Genótipo
9.
Nat Commun ; 14(1): 765, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765112

RESUMO

Extreme weather events threaten food security, yet global assessments of impacts caused by crop waterlogging are rare. Here we first develop a paradigm that distils common stress patterns across environments, genotypes and climate horizons. Second, we embed improved process-based understanding into a farming systems model to discern changes in global crop waterlogging under future climates. Third, we develop avenues for adapting cropping systems to waterlogging contextualised by environment. We find that yield penalties caused by waterlogging increase from 3-11% historically to 10-20% by 2080, with penalties reflecting a trade-off between the duration of waterlogging and the timing of waterlogging relative to crop stage. We document greater potential for waterlogging-tolerant genotypes in environments with longer temperate growing seasons (e.g., UK, France, Russia, China), compared with environments with higher annualised ratios of evapotranspiration to precipitation (e.g., Australia). Under future climates, altering sowing time and adoption of waterlogging-tolerant genotypes reduces yield penalties by 18%, while earlier sowing of winter genotypes alleviates waterlogging by 8%. We highlight the serendipitous outcome wherein waterlogging stress patterns under present conditions are likely to be similar to those in the future, suggesting that adaptations for future climates could be designed using stress patterns realised today.


Assuntos
Aclimatação , Água , Estações do Ano , Adaptação Fisiológica , Agricultura
10.
Plant Cell Environ ; 46(4): 1340-1362, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36097648

RESUMO

This study tested the hypothesis that brassinosteroids (BRs) mediate moderate soil-drying (MD) to alleviate spikelet degeneration under high temperature (HT) stress during meiosis of rice (Oryza sativa L.). A rice cultivar was pot-grown and subjected to normal temperature (NT) and HT treatments during meiosis, and two irrigation regimes including well-watered (WW) and MD were imposed to the plants simultaneously. The MD effectively alleviated the spikelet degeneration and yield loss under HT stress mainly via improving root activity and canopy and panicle traits including higher photosynthetic capacity, tricarboxylic acid cycle activity, and antioxidant capacity than WW. These parameters were regulated by BRs levels in plants. The decrease in BRs levels at HT was due mainly to the enhanced BRs decomposition, and the MD could rescue the BRs deficiency at HT via enhancing BRs biosynthesis and impeding decomposition. The connection between BRs and HT was verified by using rice BRs-deficient mutants, transgenic rice lines, and chemical regulators. Similar results were obtained in the open-air field experiment. The results suggest that BRs can mediate the MD to alleviate spikelet degeneration under HT stress during meiosis mainly via enhancing root activity, canopy traits, and young panicle traits of rice.


Assuntos
Brassinosteroides , Oryza , Brassinosteroides/farmacologia , Temperatura , Solo , Meiose
11.
Ying Yong Sheng Tai Xue Bao ; 34(12): 3364-3372, 2023 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-38511376

RESUMO

The middle and lower reaches of the Yangtze River is one of main grain production areas in China, which is of great significance to food security. Understanding the carbon footprint of major grain crop production is helpful to develop high-yield and low-carbon agriculture. Based on the data of yield, sown area and farmland production input of main grain crops (rice, wheat and maize) in six provinces (Jiangsu, Anhui, Jiangxi, Hubei, Hunan, and Zhejiang) in the middle and lower reaches of the Yangtze River from 2011 to 2020, we estimated carbon footprint in the production of the three grain crops. The results showed that from 2011 to 2020, yield per unit area, planting area, and total yield of rice, wheat and maize were the highest in Jiangsu Province. In terms of area-scaled carbon footprint, rice in the middle and lower reaches of the Yangtze River had the highest area-scaled carbon footprint, with an average of 2.0 t CE·hm-2, followed by wheat and maize. The area-scaled carbon footprint of the three staple crops was increasing. In terms of yield-scaled carbon footprint, rice was the highest, with an average of 0.8 kg CE·kg-1, followed by wheat and maize. In terms of carbon input structure, irrigation electricity, chemical fertilizers and pesticides accounted for a relatively high proportion. Irrigation electricity accounted for 35.0%, 36.3%, and 33.2% of the total carbon input of rice, wheat and maize, respectively. Chemical fertilizers accounted for 28.8%, 32.5%, and 32.5%, respectively, while pesticides accounted for 24.2%, 13.3% and 11.5%, respectively. In terms of carbon efficiency, maize had the highest (3.9 kg·kg-1 CE), followed by rice and wheat. With the green development of agriculture, carbon emission in the production of major grain crops in the middle and lower reaches of the Yangtze River could be reduced by improving irrigation efficiency, fertilizer utilization efficiency, pesticide utilization efficiency and mechanized operation efficiency, as well as diversification of straw returning, cultivation of new varieties and policy leverage.


Assuntos
Oryza , Praguicidas , Pegada de Carbono , Fertilizantes , Rios , Agricultura/métodos , Produtos Agrícolas , Grão Comestível , China , Zea mays , Triticum , Carbono/análise
12.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36430147

RESUMO

The mobilization and translocation of carbohydrates and mineral nutrients from vegetative plant parts to grains are pivotal for grain filling, often involving a whole plant senescence process. Loss of greenness is a hallmark of leaf senescence. However, the relationship between crop yield and senescence has been controversial for many years. Here, in this study, the overexpression and RNA interference lines of gene of OsNYC3 (Non-Yellow Coloring 3), a chlorophyll catabolism gene, were investigated. Furthermore, exogenous phytohormones were applied, and a treatment of alternate wetting and moderate drying (AWMD) was introduced to regulate the processes of leaf senescence. The results indicated that the delayed senescence of the "STAY-GREEN" trait of rice is undesirable for the process of grain filling, and it would cause a lower ratio of grain filling and lower grain weight of inferior grains, because of unused assimilates in the stems and leaves. Through the overexpression of OsNYC3, application of exogenous chemicals of abscisic acid (ABA), and water management of AWMD, leaf photosynthesis was less influenced, a high ratio of carbohydrate assimilates was partitioned to grains other than leaves and stems as labeled by 13C, grain filling was improved, especially for inferior spikelets, and activities of starch-synthesizing enzymes were enhanced. However, application of ethephon not only accelerated leaf senescence, but also caused seed abortion and grain weight reduction. Thus, plant senescence needs to be finely adjusted in order to make a contribution to crop productivity.


Assuntos
Oryza , Oryza/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Ácido Abscísico/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo
13.
Sci Rep ; 12(1): 17188, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36229485

RESUMO

The climate crisis challenges farmer livelihoods as increasingly frequent extreme weather events impact the quantum and consistency of crop production. Here, we develop a novel paradigm to raise whole farm profit by optimising manifold variables that drive the profitability of irrigated grain farms. We build then invoke a new decision support tool-WaterCan Profit-to optimise crop type and areas that collectively maximise farm profit. We showcase four regions across a climate gradient in the Australian cropping zone. The principles developed can be applied to cropping regions or production systems anywhere in the world. We show that the number of profitable crop types fell from 35 to 10 under future climates, reflecting the interplay between commodity price, yield, crop water requirements and variable costs. Effects of climate change on profit were not related to long-term rainfall, with future climates depressing profit by 11-23% relative to historical climates. Impacts of future climates were closely related to crop type and maturity duration; indeed, many crop types that were traditionally profitable under historical climates were no longer profitable in future. We demonstrate that strategic whole farm planning of crop types and areas can yield significant economic benefits. We suggest that future work on drought adaptation consider genetic selection criteria more diverse than phenology and yield alone. Crop types with (1) higher value per unit grain weight, (2) lower water requirements and (3) higher water-use efficiency are more likely to ensure the sustainability and prosperity of irrigated grain production systems under future climates.


Assuntos
Mudança Climática , Secas , Agricultura , Austrália , Grão Comestível , Fazendas , Água
14.
J Sci Food Agric ; 102(5): 1832-1841, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34460951

RESUMO

BACKGROUND: Applying organic fertilizer coupled with chemical fertilizer has been widely adopted to improve crop productivity and quality and develop sustainable agriculture. However, little information is available about the effects of organic fertilizer on the grain quality of rice (Oryza sativa L.), especially nutritional quality and starch quality. In the present study, high yielding 'super' rice cultivars were grown in the field with three cultivation practices, including zero nitrogen application (0N), local high yielding practice with chemical fertilizer (T1) and T1 treatment with additional organic fertilizer (T2). RESULTS: Application of organic fertilizer synergistically improved rice production, nitrogen use efficiency, milling and appearance quality, and nutritional quality, including the contents of glutelin, essential amino acids and microelements, and also increased amylopectin and the ratio of the short chain of amylopectin, leading to a reduction in relative crystallinity, and decreased prolamin content. Application of organic fertilizer also increased the viscosity and breakdown values, whereas it decreased the pasting temperature and gelatinization enthalpy, resulting in better cooking and eating quality. CONCLUSION: Overall, application of organific fertilizer could synergistically improve nitrogen use efficiency and grain quality, including the structure and physicochemical properties of starch, contents of high value protein and amino acids, contents of microelements, and cooking and eating quality. © 2021 Society of Chemical Industry.


Assuntos
Brassica napus , Oryza , Brassica napus/metabolismo , Produção Agrícola/métodos , Fertilizantes , Nitrogênio/metabolismo , Oryza/química , Amido/química
15.
Sci Total Environ ; 806(Pt 2): 150669, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34597563

RESUMO

Ongoing increases in atmospheric carbon dioxide (CO2) are expected to stimulate biomass and yield of plants possessing the C3 photosynthetic pathway; however, the extent of stimulation is likely to vary both intra- and inter-species specifically. Meta-analytic approaches can be applied to decrease variation and uncertainty by delineating and characterizing variation, allowing results to be used in modeling plant responses to elevated [CO2]. However, the use of meta-analysis in this effort could be limited by missing measures of variance, including standard deviations (SDs) of the compiled dataset. Here, we examined whether there were differences in effect sizes of elevated [CO2] on plant growth using various weighting and imputation approaches. Our results showed that the efficacy of different weighting functions and data interpolation methods on meta-analysis outcomes depended on the SDs provided by the studies. Comparing different methodologies for [CO2] fumigation as a case study, if the ratio of missing SD was low, the overall trend of effect values and 95% confidence interval (CI) were not changed. For datasets of greenhouse and growth chamber [CO2] methodologies, which had a high ratio of missing SDs, effect sizes and 95% confidence intervals using different weighing and imputation methods were influenced relative to that of the raw dataset, with reduced effect sizes and broader CI. Overall these results suggest that application of meta-analysis to discern general biological responses could be influenced by the number of missing SDs. As such, efforts should be made to check the proportion of missing SDs of the compiled dataset and if necessary, to apply various weighting functions and imputation methods to fully discern meta-analysis implications. Our findings could improve the assessment of methodological choices for future [CO2] experimentation and discerning long-term trends for agricultural productivity and food security.


Assuntos
Dióxido de Carbono , Desenvolvimento Vegetal , Biomassa , Fotossíntese , Plantas
16.
J Ethnopharmacol ; 285: 114905, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896205

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tongue coating has been used as an effective signature of health in traditional Chinese medicine (TCM). The level of greasy coating closely relates to the strength of dampness or pathogenic qi in TCM theory. Previous empirical studies and our systematic review have shown the relation between greasy coating and various diseases, including gastroenteropathy, coronary heart disease, and coronavirus disease 2019 (COVID-19). However, the objective and intelligent greasy coating and related diseases recognition methods are still lacking. The construction of the artificial intelligent tongue recognition models may provide important syndrome diagnosis and efficacy evaluation methods, and contribute to the understanding of ethnopharmacological mechanisms based on TCM theory. AIM OF THE STUDY: The present study aimed to develop an artificial intelligent model for greasy tongue coating recognition and explore its application in COVID-19. MATERIALS AND METHODS: Herein, we developed greasy tongue coating recognition networks (GreasyCoatNet) using convolutional neural network technique and a relatively large (N = 1486) set of tongue images from standard devices. Tests were performed using both cross-validation procedures and a new dataset (N = 50) captured by common cameras. Besides, the accuracy and time efficiency comparisons between the GreasyCoatNet and doctors were also conducted. Finally, the model was transferred to recognize the greasy coating level of COVID-19. RESULTS: The overall accuracy in 3-level greasy coating classification with cross-validation was 88.8% and accuracy on new dataset was 82.0%, indicating that GreasyCoatNet can obtain robust greasy coating estimates from diverse datasets. In addition, we conducted user study to confirm that our GreasyCoatNet outperforms TCM practitioners, yet only consuming roughly 1% of doctors' examination time. Critically, we demonstrated that GreasyCoatNet, along with transfer learning, can construct more proper classifier of COVID-19, compared to directly training classifier on patient versus control datasets. We, therefore, derived a disease-specific deep learning network by finetuning the generic GreasyCoatNet. CONCLUSIONS: Our framework may provide an important research paradigm for differentiating tongue characteristics, diagnosing TCM syndrome, tracking disease progression, and evaluating intervention efficacy, exhibiting its unique potential in clinical applications.


Assuntos
COVID-19 , Técnicas e Procedimentos Diagnósticos , Etnofarmacologia/métodos , Medicina Tradicional Chinesa/métodos , Língua , Inteligência Artificial , COVID-19/diagnóstico , COVID-19/terapia , Humanos , Redes Neurais de Computação , Avaliação de Resultados em Cuidados de Saúde/métodos , Qi , SARS-CoV-2 , Língua/microbiologia , Língua/patologia
17.
Front Plant Sci ; 13: 1099751, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714775

RESUMO

Straw returning plays an essential role in crop yields and the sustainable development of agriculture. However, the effects and mechanisms of nitrogen (N) fertilizer management on grain yield, quality and aroma substance 2-acetyl-1-pyrroline (2-AP) content under wheat straw returning are still unclear. In this field experiment, two japonica rice cultivars were used as materials, wheat straw non-returning (NS) and wheat straw full returning (WS) were designed coupled with two N application ratios, namely basal fertilizer: tiller fertilizer: panicle fertilizer =5:1:4 (local farmers' fertilizer practice, LFP) and 7:1:2 (increasing basal fertilizer rate, IBF) under the total N application rate of 270 kg ha-1. The effects of the four treatment combinations (NS-LFP, NS-IBF, WS-LFP, WS-IBF) on yield, cooking and eating quality, and 2-AP content in rice were investigated. The two-year (2020, 2021) results showed that: 1) WS-IBF significantly increased the number of panicles and grains per panicle, leading to the increase in grain yield by 6.67%-12.21%, when compared with NS-LFP, NS-IBF and WS-LFP. 2) WS-IBF enhanced the taste value, peak viscosity, breakdown value, the ratio of amylopectin to amylose, and the ratio of glutelin to prolamin while reducing the setback value and amylose content of rice flour. 3) Compared with NS, WS increased the activities of proline dehydrogenase and ornithine transaminase, the synthetic precursors of 2-AP, and finally increased 2-AP content in rice grains. WS-IBF slightly decreased 2-AP content, but there was no significant difference with WS-LFP. The above results indicated that adjusting the N regime and increasing basal N fertilizer rate under wheat straw returning is conducive to improving grain yield, cooking and eating quality, and 2-AP content in rice.

18.
ACS Appl Mater Interfaces ; 13(3): 4072-4083, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33438993

RESUMO

We present an enhanced catalytic efficiency of palladium (Pd) nanoparticles (NPs) for the electrocatalytic hydrodechlorination (EHDC) reaction by incorporating the tetraethylammonium chloride (TEAC) ligand into the surface of NPs. Both experimental and theoretical analyses reveal that the surface-adsorbed TEAC is converted to molecular amine (primarily triethylamine) under reductive potentials, forming a strong ligand-Pd interaction that is beneficial to the EHDC kinetics. Using the EHDC of 2,4-dichlorophenol (2,4-DCP), a dominant persistent pollutant identified by the U.S. Environmental Protection Agency, as an example, the Pd/amine composite delivers a mass activity of 2.32 min-1 gPd-1 and a specific activity of 0.16 min-1 cm-2 at -0.75 V versus Ag/AgCl, outperforming Pd and most of the previously reported catalysts. The mechanistic study reveals that the amine ligand offers three functions: the H+-pumping effect, the electronic effect, and the steric effect, providing a favorable environment for the generation of reactive hydrogen radicals (H*) for hydrogenolysis of the C-Cl bond. It also weakens the adsorption strength of EHDC products, alleviating their poisoning on Pd. Investigation into the intermediate products of EHDC on Pd/amine and the biological safety of the 2,4-DCP-contaminated water after EHDC treatment demonstrates that EHDC on Pd/amine is environmentally benign for halogenated organic pollutant abatement. This work suggests that the tuning of NP catalysis using facile ligand post-treatment may lead to new strategies to improve EHDC for environmental remediation applications.

19.
J Sci Food Agric ; 101(9): 3854-3861, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33336371

RESUMO

BACKGROUND: Protein and some minerals of rice seed are negatively affected by projected carbon dioxide (CO2 ) levels. However, an in-depth assessment of rice quality that encompasses both CO2 and temperature for a wide range of nutritional parameters is not available. Using a free-air CO2 enrichment facility with temperature control, we conducted a field experiment with two levels of CO2 (ambient; ambient + 200 ppm) and two levels of temperature (ambient; ambient + 1.5 °C). An in-depth examination of qualitative factors indicated a variable nutritional response. RESULTS: For total protein, albumin, glutelin, and prolamin, elevated CO2 reduced seed concentrations irrespective of temperature. Similarly, several amino acids declined further as a function of higher temperature and elevated CO2 relative to elevated CO2 alone. Higher temperature increased the lipid percentage of seed; however, elevated CO2 reduced the overall lipid content. At the nutrient elements level, whereas elevated CO2 reduced certain elements, a combination of CO2 and temperature could compensate for CO2 reductions but was element dependent. CONCLUSION: Overall, these data are, at present, the most detailed analysis of rising CO2 /temperature on the qualitative characteristics of rice. They indicate that climate change is likely to significantly impact the nutritional integrity of rice, with subsequent changes in human health on a global basis. © 2020 Society of Chemical Industry.


Assuntos
Dióxido de Carbono/análise , Ecossistema , Oryza/química , Aminoácidos/análise , Mudança Climática , Minerais/análise , Minerais/metabolismo , Nitrogênio , Valor Nutritivo , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Sementes/química , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Temperatura
20.
Sci Total Environ ; 761: 143206, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33168249

RESUMO

Evaluating the impact of climate change factors, especially temperature and carbon dioxide (CO2), on rice yield is essential to ensure future food security. Because of the wide biogeographical distribution of rice, such evaluations are conducted exclusively through modeling efforts. However, geographical forecasts could, potentially, be improved by the inclusion of field-based data on projected increases in temperature and CO2 concentration from a given rice-growing region. In this study, the latest version of the ORYZA (v3) crop model was evaluated with additional yield data obtained from a temperature-controlled free-air CO2 enrichment system (T-FACE) in Southeastern China. ORYZA (v3) results were then evaluated in the context of phase five of the Coupled Model Intercomparison Project (CMIP5) for representative concentration pathways (RCP) 4.5 and RCP 8.5 using five global change models (GCMs). Our findings indicate that climate change, i.e., inclusion of CO2 and temperature effects, decreased mean rice yield by 3.5%, and 9.4% for RCP 4.5; and by 10.5 and 47.9% for RCP 8.5 for the scenarios in the 2050s and 2080s, respectively. The CO2 fertilizer effect partially compensated but did not offset the negative impacts of rising temperature on rice yields. Warmer temperatures were the primary factor that influenced yield by adversely affecting the spikelet fertility factor and spikelet number. Overall, climate change would have positive effects on rice yields until the middle-century in Southeastern China but negative effects were noted by the end of the century. These results may be of interest for informing policy makers and developing appropriate strategies to improve future rice productivity for this region of China.


Assuntos
Mudança Climática , Oryza , Dióxido de Carbono , China , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...