Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38992936

RESUMO

Cyclic peptides are an important class of molecules that gained significant attention in the field of drug discovery due to their unique pharmacological characteristics and enhanced proteolytic stability. Yet, gastrointestinal degradation remains a major hurdle in the discovery of orally bioavailable cyclic peptides. Soft spot identification (SSID) of the regions in the cyclic peptide sequence susceptible to amide hydrolysis by proteases is used in the discovery stage to guide medicinal chemistry design. SSID can be an arduous task, traditionally performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS), often resulting in complex and time-consuming manual analysis, particularly when isomeric linear peptide metabolites chromatographically coelute. Here, we present an alternative orthogonal approach that entails a high-resolution ion mobility (HRIM) system based on Structures for Lossless Ion Manipulation (SLIM) technology interfaced with quadrupole time-of-flight (QTOF) mass spectrometry to address some of the challenges associated with SSID. Two strategies were used to resolve linear isomeric peptide metabolites: labeled and label-free, both utilizing the HRIM platform. The label-free strategy leverages negative polarity to ionize the isomers which achieves better separation of the gas phase ions in the ion mobility (IM) dimension as compared to positive polarity, which is a more conventional approach when studying proteins and peptides. The second approach uses an isotope-labeled dimethyl tag on the terminal amine group, acting as a "shift reagent" to influence the mobility of isomers in the positive mode. This method resulted in baseline separation for the isomers of interest and produced unique product ions in the fragmentation spectra for unambiguous soft spot identification. Both label-free and labeled strategies demonstrated the ability to solve the challenges associated with SSID for cyclic peptides.

2.
J Am Soc Mass Spectrom ; 34(10): 2176-2186, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37703523

RESUMO

Lipids are structurally diverse molecules that play a pivotal role in a plethora of biological processes. However, deciphering the biological roles of the specific lipids is challenging due to the existence of numerous isomers. This high chemical complexity of the lipidome is one of the major challenges in lipidomics research, as the traditional liquid chromatography-mass spectrometry (LC-MS) based approaches are often not powerful enough to resolve these isomeric and isobaric nuances within complex samples. Thus, lipids are uniquely suited to the benefits provided by multidimensional liquid chromatography-ion mobility-mass spectrometry (LC-IM-MS) analysis. However, many forms of lipid isomerism, including double-bond positional isomers and regioisomers, are structurally similar such that their collision cross section (CCS) differences are unresolvable via conventional IM approaches. Here we evaluate the performance of a high resolution ion mobility (HRIM) system based on structures for lossless ion manipulation (SLIM) technology interfaced to a high resolution quadrupole time-of-flight (QTOF) analyzer to address the noted lipidomic isomerism challenge. SLIM implements the traveling wave ion mobility technique along an ∼13 m ion path, providing longer path lengths to enable improved separation of isomeric features. We demonstrate the power of HRIM-MS to dissect isomeric PC standards differing only in double bond (DB) and stereospecific number (SN) positions. The partial separation of protonated DB isomers is significantly enhanced when they are analyzed as metal adducts. For sodium adducts, we achieve close to baseline separation of three different PC 18:1/18:1 isomers with different cis-double bond locations. Similarly, PC 18:1/18:1 (cis-9) can be resolved from the corresponding PC 18:1/18:1 (trans-9) form. The separation capacity is further enhanced when using silver ion doping, enabling the baseline separation of regioisomers that cannot be resolved when measured as sodium adducts. The sensitivity and reproducibility of the approach were assessed, and the performance for more complex mixtures was benchmarked by identifying PC isomers in total brain and liver lipid extracts.

3.
J Med Chem ; 65(7): 5593-5605, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35298158

RESUMO

We have identified a series of novel insulin receptor partial agonists (IRPAs) with a potential to mitigate the risk of hypoglycemia associated with the use of insulin as an antidiabetic treatment. These molecules were designed as dimers of native insulin connected via chemical linkers of variable lengths with optional capping groups at the N-terminals of insulin chains. Depending on the structure, the maximal activation level (%Max) varied in the range of ∼20-70% of native insulin, and EC50 values remained in sub-nM range. Studies in minipig and dog demonstrated that IRPAs had sufficient efficacy to normalize plasma glucose levels in diabetes, while providing reduction of hypoglycemia risk. IRPAs had a prolonged duration of action, potentially making them suitable for once-daily dosing. Two lead compounds with %Max values of 30 and 40% relative to native insulin were selected for follow up studies in the clinic.


Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemia , Animais , Glicemia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Cães , Hipoglicemia/tratamento farmacológico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Receptor de Insulina , Suínos , Porco Miniatura , Índice Terapêutico
4.
Toxicol Sci ; 185(2): 170-183, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-34897513

RESUMO

Studies have shown that some peptides and small molecules can induce non IgE-mediated anaphylactoid reactions through mast cell activation. Upon activation, mast cells degranulate and release vasoactive and proinflammatory mediators, from cytoplasmic granules into the extracellular environment which can induce a cascade of severe adverse reactions. This study describes a lead optimization strategy to select NaV1.7 inhibitor peptides that minimize acute mast cell degranulation (MCD) toxicities. Various in vitro, in vivo, and PKPD models were used to screen candidates and guide peptide chemical modifications to mitigate this risk. Anesthetized rats dosed with peptides demonstrated treatment-related decreases in blood pressure and increases in plasma histamine concentrations which were reversible with a mast cell stabilizer, supporting the MCD mechanism. In vitro testing in rat mast cells with NaV1.7 peptides demonstrated a concentration-dependent increase in histamine. Pharmacodynamic modeling facilitated establishing an in vitro to in vivo correlation for histamine as a biomarker for blood pressure decline via the MCD mechanism. These models enabled assessment of structure-activity relationship (SAR) to identify substructures that contribute to peptide-mediated MCD. Peptides with hydrophobic and cationic characteristics were determined to have an elevated risk for MCD, which could be reduced or avoided by incorporating anionic residues into the protoxin II scaffold. Our analyses support that in vitro MCD assessment in combination with PKPD modeling can guide SAR to improve peptide lead optimization and ensure an acceptable early in vivo tolerability profile with reduced resources, cycle time, and animal use.


Assuntos
Mastócitos , Medicamentos Sintéticos , Animais , Degranulação Celular , Chumbo , Mastócitos/metabolismo , Peptídeos/química , Peptídeos/toxicidade , Ratos , Medicamentos Sintéticos/metabolismo
5.
J Med Chem ; 65(1): 485-496, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34931831

RESUMO

Inhibitor cystine knot peptides, derived from venom, have evolved to block ion channel function but are often toxic when dosed at pharmacologically relevant levels in vivo. The article describes the design of analogues of ProTx-II that safely display systemic in vivo blocking of Nav1.7, resulting in a latency of response to thermal stimuli in rodents. The new designs achieve a better in vivo profile by improving ion channel selectivity and limiting the ability of the peptides to cause mast cell degranulation. The design rationale, structural modeling, in vitro profiles, and rat tail flick outcomes are disclosed and discussed.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7/efeitos dos fármacos , Dor/tratamento farmacológico , Bloqueadores dos Canais de Sódio/síntese química , Bloqueadores dos Canais de Sódio/farmacologia , Venenos de Aranha/síntese química , Animais , Degranulação Celular/efeitos dos fármacos , Cistina/química , Desenho de Fármacos , Temperatura Alta , Mastócitos/efeitos dos fármacos , Modelos Moleculares , Medição da Dor/efeitos dos fármacos , Ratos , Venenos de Aranha/farmacologia
6.
J Med Chem ; 64(22): 16770-16800, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34704436

RESUMO

Proprotein convertase subtilisin-like/kexin type 9 (PCSK9) is a key regulator of plasma LDL-cholesterol (LDL-C) and a clinically validated target for the treatment of hypercholesterolemia and coronary artery disease. Starting from second-generation lead structures such as 2, we were able to refine these structures to obtain extremely potent bi- and tricyclic PCSK9 inhibitor peptides. Optimized molecules such as 44 demonstrated sufficient oral bioavailability to maintain therapeutic levels in rats and cynomolgus monkeys after dosing with an enabled formulation. We demonstrated target engagement and LDL lowering in cynomolgus monkeys essentially identical to those observed with the clinically approved, parenterally dosed antibodies. These molecules represent the first report of highly potent and orally bioavailable macrocyclic peptide PCSK9 inhibitors with overall profiles favorable for potential development as once-daily oral lipid-lowering agents. In this manuscript, we detail the design criteria and multiparameter optimization of this novel series of PCSK9 inhibitors.


Assuntos
Inibidores de PCSK9/farmacologia , Peptídeos Cíclicos/farmacologia , Administração Oral , Animais , Disponibilidade Biológica , Cristalografia por Raios X , Macaca fascicularis , Estrutura Molecular , Inibidores de PCSK9/química , Inibidores de PCSK9/farmacocinética , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacocinética , Ratos , Relação Estrutura-Atividade
7.
Anal Bioanal Chem ; 412(1): 81-91, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31953713

RESUMO

Methods for detecting mycotoxins are very important because of the great health hazards of mycotoxins. However, there is a high background and low signal-to-noise ratio in real-time sensing, and therefore it is difficult to meet the fast, accurate, and convenient requirements for control of food quality. Here we constructed a quantitative fluorescence image analysis based on multicolor upconversion nanocrystal (UCN)-encoded microspheres for detection of ochratoxin A and zearalenone. The background-free encoding image signal of UCN-doped microspheres was captured by fluorescence microscopy under near-infrared excitation, whereas the detection image signal of phycoerythrin-labeled secondary antibodies conjugated to the microspheres was captured under blue light excitation. We custom-wrote an algorithm to analyze the two images for the same sample in 10 s, and only the gray value in the red channel of the secondary probe confirmed the quantity. The results showed that this novel detection platform performed feasible and reliable fluorescence image measurements by this method. Additionally, the limit of detection of was 0.34721 ng/mL for ochratoxin A and 0.41162 ng/mL for zearalenone. We envision that this UCN encoding strategy will be usefully applied for fast, accurate, and convenient testing of multiple food contaminants to ensure the safety of the food.


Assuntos
Microesferas , Ocratoxinas/análise , Zearalenona/análise , Contaminação de Alimentos/análise , Imunoensaio/métodos , Limite de Detecção , Nanopartículas/química , Razão Sinal-Ruído
8.
J Am Soc Mass Spectrom ; 30(9): 1779-1789, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31250320

RESUMO

Peptides represent a promising modality for the design of novel therapeutics that can potentially modulate traditionally non-druggable targets. Cell-penetrating peptides (CPPs) and antimicrobial peptides (AMPs) are two large families that are being explored extensively as drug delivery vehicles, imaging reagents, or therapeutic treatments for various diseases. Many CPPs and AMPs are cationic among which a significant portion is extremely basic and hydrophilic (e.g., nona-arginine). Despite their attractive therapeutic potential, it remains challenging to directly analyze and quantify these super cationic peptides from biological matrices due to their poor chromatographic behavior and MS response. Herein, we describe a generic method that combines solid phase extraction and LC-MS/MS for analysis of these peptides. As demonstrated, using a dozen strongly basic peptides, low µM concentration of perfluoropentanoic acid (PFPeA) in the mobile phase enabled excellent compound chromatographic retention, thus avoiding co-elution with solvent front ion suppressants. PFPeA also had a charge reduction effect that allowed the selection of parent/ion fragment pairs in the higher m/z region to further reduce potential low molecular weight interferences. When the method was coupled to the optimized sample extraction process, we routinely achieved low digit ng/ml sensitivity for peptides in plasma/tissue. The method allowed an efficient evaluation of plasma stability of CPPs/AMPs without fluorescence derivatization or other tagging methods. Importantly, using the widely studied HIV-TAT CPP as an example, the method enabled us to directly assess its pharmacokinetics and tissue distribution in preclinical animal models.


Assuntos
Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Ácidos Pentanoicos/química , Peptídeos/análise , Peptídeos/farmacocinética , Animais , Peptídeos Catiônicos Antimicrobianos/análise , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Penetradores de Células/análise , Precipitação Química , Estabilidade de Medicamentos , Fluorocarbonos , Interações Hidrofóbicas e Hidrofílicas , Masculino , Peptídeos/química , Ratos Wistar , Extração em Fase Sólida , Distribuição Tecidual , Ácido Tricloroacético/química , Produtos do Gene tat do Vírus da Imunodeficiência Humana/análise , Produtos do Gene tat do Vírus da Imunodeficiência Humana/farmacocinética
9.
Plant Physiol Biochem ; 132: 547-556, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30316164

RESUMO

Ginger (Zingiber officinale Roscoe), one of the most economically valuable plants in the Zingiberaceae family, is widely used as a spice and flavoring agent for beverages, bakery, confectionary, and pharmaceutics. Bacterial wilt disease, caused by Ralstonia solanacearum, is one of the most detrimental production constraints in ginger cultivation. Field cultivation experiments indicated that soil moisture affects the incidence of bacterial wilt disease. However, the relationship between soil moisture and bacterial wilt incidence as well as the mechanism that underlie this infection remain unclear. This study confirms that high soil moisture elevates the susceptibility to R. solanacearum infection; transcriptome sequencing was performed to elucidate the underlying mechanisms. Differential expression indicates that a small number of genes is involved in both the response to high soil moisture as well as post successful R. solanacearum infection; furthermore, a large number of genes is involved in the defense of the infection. In response to high soil moisture, higher ABA contents, and higher expression levels of ABF4 may be related to higher tiller density in ginger. More importantly, WAK16 and WAK3-2 may be determinative genes that weaken the resistance to R. solanacearum in ginger under high soil moisture. The down-regulated expression levels of PRX, CPY, and XET genes indicate that in response to successful R. solanacearum infection, the normal cell wall metabolism may be disturbed and the hypersensitive response may be inhibited. In summary, our study deepens our understanding of the molecular mechanisms of the soil moisture dependent wilt susceptibility of ginger.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Umidade , Doenças das Plantas/microbiologia , Ralstonia solanacearum/patogenicidade , Solo , Zingiber officinale/genética , Zingiber officinale/microbiologia , Parede Celular/metabolismo , Suscetibilidade a Doenças , Zingiber officinale/crescimento & desenvolvimento , Anotação de Sequência Molecular , Doenças das Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Transcriptoma/genética
11.
Diabetes Care ; 40(8): 1073-1081, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28550195

RESUMO

OBJECTIVE: Antihyperglycemic agents, such as empagliflozin, stimulate proximal tubular natriuresis and improve cardiovascular and renal outcomes in patients with type 2 diabetes. Because dipeptidyl peptidase 4 (DPP-4) inhibitors are used in combination with sodium-glucose cotransporter 2 (SGLT2) inhibitors, we examined whether and how sitagliptin modulates fractional sodium excretion and renal and systemic hemodynamic function. RESEARCH DESIGN AND METHODS: We studied 32 patients with type 2 diabetes in a prospective, double-blind, randomized, placebo-controlled trial. Measurements of renal tubular function and renal and systemic hemodynamics were obtained at baseline, then hourly after one dose of sitagliptin or placebo, and repeated at 1 month. Fractional excretion of sodium and lithium and renal hemodynamic function were measured during clamped euglycemia. Systemic hemodynamics were measured using noninvasive cardiac output monitoring, and plasma levels of intact versus cleaved stromal cell-derived factor (SDF)-1α were quantified using immunoaffinity and tandem mass spectrometry. RESULTS: Sitagliptin did not change fractional lithium excretion but significantly increased total fractional sodium excretion (1.32 ± 0.5 to 1.80 ± 0.01% vs. 2.15 ± 0.6 vs. 2.02 ± 1.0%, P = 0.012) compared with placebo after 1 month of treatment. Moreover, sitagliptin robustly increased intact plasma SDF-1α1-67 and decreased truncated plasma SDF-1α3-67. Renal hemodynamic function, systemic blood pressure, cardiac output, stroke volume, and total peripheral resistance were not adversely affected by sitagliptin. CONCLUSIONS: DPP-4 inhibition promotes a distal tubular natriuresis in conjunction with increased levels of intact SDF-1α1-67. Because of the distal location of the natriuretic effect, DPP-4 inhibition does not affect tubuloglomerular feedback or impair renal hemodynamic function, findings relevant to using DPP-4 inhibitors for treating type 2 diabetes.


Assuntos
Quimiocina CXCL12/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores da Dipeptidil Peptidase IV/efeitos adversos , Hipoglicemiantes/efeitos adversos , Natriurese/efeitos dos fármacos , Idoso , Pressão Sanguínea/efeitos dos fármacos , Diabetes Mellitus Tipo 2/sangue , Inibidores da Dipeptidil Peptidase IV/administração & dosagem , Método Duplo-Cego , Feminino , Hemodinâmica , Humanos , Hipoglicemiantes/administração & dosagem , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fosfato de Sitagliptina/administração & dosagem , Fosfato de Sitagliptina/efeitos adversos , Transportador 2 de Glucose-Sódio/sangue , Inibidores do Transportador 2 de Sódio-Glicose
12.
Int J Syst Evol Microbiol ; 66(2): 946-950, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26637822

RESUMO

A Gram-staining-negative, yellow-pigmented strain, designated SYP-B804T, was isolated from the rhizosphere of Panax notoginseng. The strain was rod-shaped with a single polar flagellum. The optimum temperature and pH required for growth of the strain were 28-32 °C and pH 7-8, respectively. 16S rRNA gene sequence analysis indicated that strain SYP-B804T showed highest 16S rRNA gene sequence similarity with Luteimonas mephitis DSM 12574T (98.0 %). However, the DNA-DNA relatedness value between them (38.1 ± 0.6 %) was less than the threshold value for the delineation of genomic species. Ubiquinone-8 (Q-8) was the predominant quinone. The major fatty acids were iso-C15 : 0 and iso-C17 : 1ω9c. The major polar lipids of the strain were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The G+C content of the genomic DNA was 71 %. On the basis of phenotypic, chemotaxonomic and molecular characteristics, strain SYP-B804T merits recognition as a representative of a novel species of the genus Luteimonas, for which the name Luteimonas notoginsengisoli sp. nov. is proposed, with SYP-B804T ( = KCTC 42211T = JCM 30329T) as the type strain.

13.
J Am Soc Mass Spectrom ; 25(4): 614-25, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24500701

RESUMO

Stromal cell-derived factor 1α (SDF-1α) or CXCL12 is a small pro-inflammatory chemoattractant cytokine and a substrate of dipeptidyl peptidase IV (DPP-IV). Proteolytic cleavage by DPP-IV inactivates SDF-1α and attenuates its interaction with CXCR4, its cell surface receptor. To enable investigation of suppression of such inactivation with pharmacologic inhibition of DPP-IV, we developed quantitative mass spectrometric methods that differentiate intact SDF-1α from its inactive form. Using top-down strategy in quantification, we demonstrated the unique advantage of keeping SDF-1α's two disulfide bridges intact in the analysis. To achieve the optimal sensitivity required for quantification of intact and truncated SDF-1α at endogenous levels in blood, we coupled nano-flow tandem mass spectrometry with antibody-based affinity enrichment. The assay has a quantitative range of 20 pmol/L to 20 nmol/L in human plasma as well as in rhesus monkey plasma. With only slight modification, the same assay can be used to quantify SDF-1α in mice. Using two in vivo animal studies as examples, we demonstrated that it was critical to differentiate intact SDF-1α from its truncated form in the analysis of biomarkers for pharmacologic inhibition of DPP-IV activity. These novel methods enable translational research on suppression of SDF-1 inactivation with DPP-IV inhibition and can be applied to relevant clinical samples in the future to yield new insights on change of SDF-1α levels in disease settings and in response to therapeutic interventions.


Assuntos
Quimiocina CXCL12/sangue , Cromatografia de Afinidade/métodos , Espectrometria de Massas em Tandem/métodos , Animais , Quimiocina CXCL12/antagonistas & inibidores , Dipeptidil Peptidase 4/metabolismo , Macaca mulatta , Camundongos Endogâmicos C57BL , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo
14.
Bioanalysis ; 6(1): 33-42, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24341493

RESUMO

BACKGROUND: Measuring endogenous levels of incretin hormones, like GLP-1, is critical in the development of antidiabetic compounds. However, the assays used to measure these molecules often have analytical issues. RESULTS: We have developed an ultrasensitive, highly-selective immunoaffinity LC-MS/MS (IA LC-MS/MS) assay capable of quantitating endogenous levels of active (7-36 amide) and inactive (9-36 amide) GLP-1 in human plasma. We performed fit-for-purpose validation of the assay by assessing the following assay performance characteristics: inter-assay precision, sensitivity, spike recovery, dilution linearity, absolute recovery, matrix effect, immunoprecipitation efficiency, and food effect. CONCLUSION: We have developed a robust analytical method for the quantitation of endogenous active and inactive GLP-1 in human plasma. In addition, we employed this method to measure the typical changes in GLP-1 levels after food intake. The sensitivity of this assay is better than another LC-MS/MS GLP-1 assay previously reported and many commercially available immunoassays. This important analytical tool could be used to qualify and/or harmonize the different immunoassays used for the quantitation of GLP-1.


Assuntos
Cromatografia Líquida/métodos , Peptídeo 1 Semelhante ao Glucagon/sangue , Imunoensaio/normas , Espectrometria de Massas em Tandem/métodos , Amidas/química , Animais , Anticorpos/química , Calibragem , Ingestão de Alimentos/fisiologia , Humanos , Imunoensaio/instrumentação , Coelhos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
15.
Anal Chem ; 84(15): 6891-8, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22788854

RESUMO

D-dimer is a product of the coagulation cascade and is associated with venous thromboembolism, disseminated intravascular coagulation, and additional clinical conditions. Despite its importance, D-dimer measurement has limited clinical utility due in part to the lack of reliable assays. The difficulty in developing an immunoassay that is specific for D-dimer arises from the inherent heterogeneity in its structure. In this report, we describe a highly specific method for the quantification of D-dimer level in human plasma. In our method, the reciprocally cross-linked peptide resulting from factor XIIIa-catalyzed dimerization of fibrin γ chains was selected to represent the D-dimer antigen. Using an antipeptide antibody, we enriched the cross-linked peptide from trypsin-digested plasma prior to quantitative analysis with liquid chromatography-tandem mass spectrometry (LC-MS/MS). The assay has a quantitative range of 500 pmol/L to 100 nmol/L in human plasma. In further characterization of the assay, we found that it exhibited good correlation with fibrinolytic activity in human donors and with thrombin generation and clot strength in an in vitro thromboelastography assay. These observations thus establish the biological relevance of the assay and suggest it may be a valuable biomarker in characterization and treatment of blood coagulation disorders.


Assuntos
Produtos de Degradação da Fibrina e do Fibrinogênio/análise , Peptídeos/isolamento & purificação , Espectrometria de Massas em Tandem , Anticorpos/imunologia , Cromatografia de Afinidade , Cromatografia Líquida de Alta Pressão , Ensaio de Imunoadsorção Enzimática , Fator XIII/metabolismo , Humanos , Marcação por Isótopo , Peptídeos/imunologia , Trombina/metabolismo
16.
Clin Chem ; 58(3): 619-27, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22249652

RESUMO

BACKGROUND: Current approaches to measure protein turnover that use stable isotope-labeled tracers via GC-MS are limited to a small number of relatively abundant proteins. We developed a multiplexed liquid chromatography-selected reaction monitoring mass spectrometry (LC-SRM) assay to measure protein turnover and compared the fractional synthetic rates (FSRs) for 2 proteins, VLDL apolipoprotein B100 (VLDL apoB100) and HDL apoA-I, measured by both methods. We applied this technique to other proteins for which kinetics are not readily measured with GC-MS. METHODS: Subjects were given a primed-constant infusion of [5,5,5-D(3)]-leucine (D(3)-leucine) for 15 h with blood samples collected at selected time points. Apolipoproteins isolated by SDS-PAGE from lipoprotein fractions were analyzed by GC-MS or an LC-SRM assay designed to measure the M+3/M+0 ratio at >1% D(3)-leucine incorporation. We calculated the FSR for each apolipoprotein by curve fitting the tracer incorporation data from each subject. RESULTS: The LC-SRM method was linear over the range of tracer enrichment values tested and highly correlated with GC-MS (R(2) > 0.9). The FSRs determined from both methods were similar for HDL apoA-I and VLDL apoB100. We were able to apply the LC-SRM approach to determine the tracer enrichment of multiple proteins from a single sample as well as proteins isolated from plasma after immunoprecipitation. CONCLUSIONS: The LC-SRM method provides a new technique for measuring the enrichment of proteins labeled with stable isotopes. LC-SRM is amenable to a multiplexed format to provide a relatively rapid and inexpensive means to measure turnover of multiple proteins simultaneously.


Assuntos
Apolipoproteína A-I/análise , Apolipoproteína B-100/análise , Biossíntese de Proteínas , Apolipoproteína A-I/biossíntese , Apolipoproteína B-100/biossíntese , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Estabilidade Proteica , Sensibilidade e Especificidade
17.
J Biol Chem ; 286(52): 44952-64, 2011 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-22030394

RESUMO

Factor XIIIa-catalyzed ε-(γ-glutamyl)-lysyl bonds between glutamine and lysine residues on fibrin α and γ chains stabilize the fibrin clot and protect it from mechanical and proteolytic damage. The cross-linking of γ chains is known to involve the reciprocal linkages between Gln(398) and Lys(406). In α chains, however, the respective lysine and glutamine partners remain largely unknown. Traditional biochemical approaches have only identified the possible lysine donor and glutamine acceptor sites but have failed to define the respective relationships between them. Here, a differential mass spectrometry method was implemented to characterize cross-linked α chain peptides originating from native fibrin. Tryptic digests of fibrin that underwent differential cross-linking conditions were analyzed by high resolution Fourier transform mass spectrometry. Differential intensities associated with monoisotopic masses of cross-linked peptides were selected for further characterization. A fit-for-purpose algorithm was developed to assign cross-linked peptide pairs of fibrin α chains to the monoisotopic masses relying on accurate mass measurement as the primary criterion for identification. Equipped with hypothesized sequences, tandem mass spectrometry was then used to confirm the identities of the cross-linked peptides. In addition to the reciprocal cross-links between Gln(398) and Lys(406) on the γ chains of fibrin (the positive control of the study), nine specific cross-links (Gln(223)-Lys(508), Gln(223)-Lys(539), Gln(237)-Lys(418), Gln(237)-Lys(508), Gln(237)-Lys(539), Gln(237)-Lys(556), Gln(366)-Lys(539), Gln(563)-Lys(539), and Gln(563)-Lys(601)) on the α chains of fibrin were newly identified. These findings provide novel structural details with respect to the α chain cross-linking compared with earlier efforts.


Assuntos
Fator XIIIa/química , Fibrina/química , Glutamina/química , Lisina/química , Peptídeos/química , Sítios de Ligação/fisiologia , Fator XIIIa/metabolismo , Fibrina/metabolismo , Glutamina/metabolismo , Humanos , Lisina/metabolismo , Peptídeos/metabolismo , Relação Estrutura-Atividade
18.
Anal Chim Acta ; 690(2): 221-7, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21435479

RESUMO

A novel approach, ultrasound-assisted dispersive liquid-liquid microextraction combined with liquid chromatography-mass spectrometry (UA-DLLME with LC-MS) is demonstrated to be quite useful for the determination of trace amounts of organoarsenic compounds in edible oil. The organoarsenic compounds studied include dimethylarsinic acid (DMA), monomethylarsonic acid (MMA) and 3-nitro-4-hydroxyphenyl arsenic acid (Roxarsone). Orthogonal array experimental design (OAD) was utilized to investigate the parameter space of conditions for UA-DLLME. The optimum conditions were found to be 4 min of ultrasonic extraction using 1.25 mL of mixed solvent with 50 µL of buffer solution. Under these optimal conditions, the linear range was from 10 ng g(-1) to 500 ng g(-1) for DMA and Roxarsone, from 25 ng g(-1) to 500 ng g(-1) for MMA. Limits of detection of DMA, MMA and Roxarsone were 1.0 ng g(-1), 3.0 ng g(-1) and 5.8 ng g(-1), respectively. The precisions and recoveries also were investigated by spiking 3-level concentrations in edible oil. The recoveries obtained were over 89.9% with relative standard deviation (RSD) of 9.6%. The new approach was utilized to successfully detect trace amounts of organoarsenic compounds in various edible oil samples.

19.
Clin Immunol ; 111(2): 186-95, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15137951

RESUMO

There is a well-recognized but unmet need for biological markers to characterize disease type, status, progression, and response to therapy in autoimmune diseases. We are developing and applying an integrated bioanalytical platform and clinical research program to facilitate comprehensive differential phenotyping of patient samples and enable the discovery of biomarkers. Our measurement platform includes microvolume laser scanning cytometry for the quantification of hundreds of cellular parameters in whole blood and other samples, liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry for the quantification of proteins and low molecular weight biomolecules in serum and other fluids or tissues, and specific immunoassays for the quantification of trace proteins in serum. We describe the technologies and discuss initial applications to the analysis of subjects with rheumatoid arthritis (RA) and healthy controls.


Assuntos
Artrite Reumatoide/sangue , Artrite Reumatoide/imunologia , Biomarcadores/sangue , Proteômica/métodos , Cromatografia Líquida de Alta Pressão/métodos , Estudos Transversais , Feminino , Humanos , Citometria por Imagem/métodos , Ligamentos Longitudinais , Masculino , Fenótipo , Espectrometria de Massas por Ionização por Electrospray/métodos
20.
Anal Chem ; 75(18): 4818-26, 2003 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-14674459

RESUMO

A new method is presented for quantifying proteomic and metabolomic profile data by liquid chromatography-mass spectrometry (LC-MS) with electrospray ionization. This biotechnology provides differential expression measurements and enables the discovery of biological markers (biomarkers). Work presented here uses human serum but is applicable to any fluid or tissue. The approach relies on linearity of signal versus molecular concentration and reproducibility of sample processing. There is no use of isotopic labeling or chemically similar standard materials. Linear standard curves are reported for a variety of compounds introduced into human serum. As a measure of analytical reproducibility for proteome and metabolome sampling, median coefficients of variation of 25.7 and 23.8%, respectively, were determined for approximately 3400 molecular ions (not counting their numerous isotopes) from 25 independently processed human serum samples, corresponding to a total of 85000 individual molecular ion measurements.


Assuntos
Espectrometria de Massas/métodos , Proteínas/análise , Humanos , Marcação por Isótopo , Padrões de Referência , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...