Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Biol Res ; 57(1): 9, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38491377

RESUMO

BACKGROUND: Parkinson's disease (PD) is characterized by death of dopaminergic neurons leading to dopamine deficiency, excessive α-synuclein facilitating Lewy body formation, etc. Latroeggtoxin-VI (LETX-VI), a proteinaceous neurotoxin discovered from the eggs of spider L. tredecimguttatus, was previously found to promote the synthesis and release of PC12 cells, showing a great potential as a drug candidate for PD. However, the relevant mechanisms have not been understood completely. The present study explored the mechanism underlying the effects of LETX-VI on dopamine and α-synuclein of PC12 cells and the implications for PD. RESULTS: After PC12 cells were treated with LETX-VI, the level of dopamine was significantly increased in a dose-dependent way within a certain range of concentrations. Further mechanism analysis showed that LETX-VI upregulated the expression of tyrosine hydroxylase (TH) and L-dopa decarboxylase to enhance the biosynthesis of dopamine, and downregulated that of monoamine oxidase B to reduce the degradation of dopamine. At the same time, LETX-VI promoted the transport and release of dopamine through modulating the abundance and/or posttranslational modification of vesicular monoamine transporter 2 (VMAT2) and dopamine transporter (DAT). While the level of dopamine was increased by LETX-VI treatment, α-synuclein content was reduced by the spider toxin. α-Synuclein overexpression significantly decreased the dopamine level and LETX-VI efficiently alleviated the inhibitory action of excessive α-synuclein on dopamine. In the MPTP-induced mouse model of PD, application of LETX-VI ameliorated parkinsonian behaviors of the mice, and reduced the magnitude of MPTP-induced α-synuclein upregulation and TH downregulation. In addition, LETX-VI displayed neuroprotective effects by inhibiting MPTP-induced decrease in the numbers of TH-positive and Nissl-stained neurons in mouse brain tissues. CONCLUSIONS: All the results demonstrate that LETX-VI promotes the synthesis and release of dopamine in PC12 cells via multiple mechanisms including preventing abnormal α-synuclein accumulation, showing implications in the prevention and treatment of PD.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Ratos , Camundongos , Animais , Dopamina/metabolismo , Doença de Parkinson/tratamento farmacológico , alfa-Sinucleína/metabolismo , Células PC12 , Camundongos Endogâmicos C57BL
2.
Biol. Res ; 572024.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1564026

RESUMO

Background Parkinson's disease (PD) is characterized by death of dopaminergic neurons leading to dopamine deficiency, excessive α-synuclein facilitating Lewy body formation, etc. Latroeggtoxin-VI (LETX-VI), a proteinaceous neurotoxin discovered from the eggs of spider L. tredecimguttatus, was previously found to promote the synthesis and release of PC12 cells, showing a great potential as a drug candidate for PD. However, the relevant mechanisms have not been understood completely. The present study explored the mechanism underlying the effects of LETX-VI on dopamine and α-synuclein of PC12 cells and the implications for PD. Results After PC12 cells were treated with LETX-VI, the level of dopamine was significantly increased in a dose-dependent way within a certain range of concentrations. Further mechanism analysis showed that LETX-VI upregulated the expression of tyrosine hydroxylase (TH) and L-dopa decarboxylase to enhance the biosynthesis of dopamine, and downregulated that of monoamine oxidase B to reduce the degradation of dopamine. At the same time, LETX-VI promoted the transport and release of dopamine through modulating the abundance and/or posttranslational modification of vesicular monoamine transporter 2 (VMAT2) and dopamine transporter (DAT). While the level of dopamine was increased by LETX-VI treatment, α-synuclein content was reduced by the spider toxin. α-Synuclein overexpression significantly decreased the dopamine level and LETX-VI efficiently alleviated the inhibitory action of excessive α-synuclein on dopamine. In the MPTP-induced mouse model of PD, application of LETX-VI ameliorated parkinsonian behaviors of the mice, and reduced the magnitude of MPTP-induced α-synuclein upregulation and TH downregulation. In addition, LETX-VI displayed neuroprotective effects by inhibiting MPTP-induced decrease in the numbers of TH-positive and Nissl-stained neurons in mouse brain tissues. Conclusions All the results demonstrate that LETX-VI promotes the synthesis and release of dopamine in PC12 cells via multiple mechanisms including preventing abnormal α-synuclein accumulation, showing implications in the prevention and treatment of PD.

3.
Biol Res ; 47: 17, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-25027663

RESUMO

BACKGROUND: Black widow spider (L. tredecimguttatus) has toxic components not only in the venomous glands, but also in other parts of the body and its eggs. It is biologically important to investigate the molecular basis of the egg toxicity. RESULTS: In the present work, an aqueous extract was prepared from the eggs of the spider and characterized using multiple physiological and biochemical strategies. Gel electrophoresis and mass spectrometry demonstrated that the eggs are rich in high-molecular-mass proteins and the peptides below 5 kDa. The lyophilized extract of the eggs had a protein content of 34.22% and was shown to have a strong toxicity towards mammals and insects. When applied at a concentration of 0.25 mg/mL, the extract could completely block the neuromuscular transmission in mouse isolated phrenic nerve-hemidiaphragm preparations within 12.0 ± 1.5 min. Using whole-cell patch-clamp technique, the egg extract was demonstrated to be able to inhibit the voltage-activated Na+, K+ and Ca2+ currents in rat DRG neurons. In addition, the extract displayed activities of multiple hydrolases. Finally, the molecular basis of the egg toxicity was discussed. CONCLUSIONS: The eggs of black widow spiders are rich in proteinous compounds particularly the high-molecular-mass proteins with different types of biological activity The neurotoxic and other active compounds in the eggs are believed to play important roles in the eggs' toxic actions.


Assuntos
Proteínas de Artrópodes/toxicidade , Viúva Negra/química , Óvulo/química , Extratos de Tecidos/química , Exoesqueleto/química , Exoesqueleto/fisiologia , Animais , Proteínas de Artrópodes/isolamento & purificação , Canais de Cálcio/efeitos dos fármacos , Baratas/efeitos dos fármacos , Gânglios Espinais/efeitos dos fármacos , Camundongos , Óvulo/fisiologia , Nervo Frênico/efeitos dos fármacos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/efeitos dos fármacos , Ratos , Extratos de Tecidos/toxicidade , Canais de Sódio Disparados por Voltagem/efeitos dos fármacos
4.
Artigo em Inglês | MEDLINE | ID: mdl-24803923

RESUMO

BACKGROUND: Numerous spider toxins are of interest as tools for neurophysiological research or as lead molecules for the development of pharmaceuticals and insecticides. Direct detection and identification of the interacting proteins of a spider toxin are helpful for its action-mechanism analysis and practical application. The present study employed a combinative strategy for the analysis of interacting proteins of huwentoxin-IV (HWTX-IV), a peptidic neurotoxin from the venom of the spider Selenocosmia huwena. RESULTS: HWTX-IV was first lightly labeled with biotin under the optimized mild experimental conditions and the toxin labeled with a single biotin group (monobiotinylated HWTX-IV) was demonstrated by electrophysiological experiments to retain its original bioactivity and was used in combination with far-western blotting to detect its interacting proteins. Comparative experiments indicated that some membrane proteins from rat neuromuscular junction preparations bind to monobiotinylated HWTX-IV after being transferred onto a PVDF membrane from the SDS-gel. With capillary high performance liquid chromatography-tandem mass spectrometry, several membrane proteins with which HWTX-IV potentially interacted were identified from the preparations and then bioinformatically analyzed. CONCLUSIONS: This work has provided not only a new insight into the action mechanism of HWTX-IV but also a reference technology for the relevant researches.

5.
J. venom. anim. toxins incl. trop. dis ; J. venom. anim. toxins incl. trop. dis;2004/02/2014.
Artigo em Inglês | LILACS | ID: lil-724685

RESUMO

Numerous spider toxins are of interest as tools for neurophysiological research or as lead molecules for the development of pharmaceuticals and insecticides. Direct detection and identification of the interacting proteins of a spider toxin are helpful for its action-mechanism analysis and practical application. The present study employed a combinative strategy for the analysis of interacting proteins of huwentoxin-IV (HWTX-IV), a peptidic neurotoxin from the venom of the spider Selenocosmia huwena.


Assuntos
Animais , Animais Peçonhentos , Avidina/análise , Análise Espectral/análise , Aranhas
6.
J. venom. anim. toxins incl. trop. dis ; J. venom. anim. toxins incl. trop. dis;20: 1-9, 04/02/2014.
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1484574

RESUMO

Numerous spider toxins are of interest as tools for neurophysiological research or as lead molecules for the development of pharmaceuticals and insecticides. Direct detection and identification of the interacting proteins of a spider toxin are helpful for its action-mechanism analysis and practical application. The present study employed a combinative strategy for the analysis of interacting proteins of huwentoxin-IV (HWTX-IV), a peptidic neurotoxin from the venom of the spider Selenocosmia huwena.


Assuntos
Animais , Animais Peçonhentos , Análise Espectral/análise , Aranhas , Avidina/análise
7.
Artigo em Inglês | VETINDEX | ID: vti-10970

RESUMO

Numerous spider toxins are of interest as tools for neurophysiological research or as lead molecules for the development of pharmaceuticals and insecticides. Direct detection and identification of the interacting proteins of a spider toxin are helpful for its action-mechanism analysis and practical application. The present study employed a combinative strategy for the analysis of interacting proteins of huwentoxin-IV (HWTX-IV), a peptidic neurotoxin from the venom of the spider Selenocosmia huwena.(AU)


Assuntos
Animais , Animais Peçonhentos , Aranhas , Avidina/análise , Análise Espectral/análise
8.
Biol. Res ; 47: 1-11, 2014. ilus, graf, tab
Artigo em Inglês | LILACS | ID: biblio-950713

RESUMO

BACKGROUND: Black widow spider (L. tredecimguttatus) has toxic components not only in the venomous glands, but also in other parts of the body and its eggs. It is biologically important to investigate the molecular basis of the egg toxicity. RESULTS: In the present work, an aqueous extract was prepared from the eggs of the spider and characterized using multiple physiological and biochemical strategies. Gel electrophoresis and mass spectrometry demonstrated that the eggs are rich in high-molecular-mass proteins and the peptides below 5 kDa. The lyophilized extract of the eggs had a protein content of 34.22% and was shown to have a strong toxicity towards mammals and insects. When applied at a concentration of 0.25 mg/mL, the extract could completely block the neuromuscular transmission in mouse isolated phrenic nerve-hemidiaphragm preparations within 12.0 ± 1.5 min. Using whole-cell patch-clamp technique, the egg extract was demonstrated to be able to inhibit the voltage-activated Na+, K+and Ca2+ currents in rat DRG neurons. In addition, the extract displayed activities of multiple hydrolases. Finally, the molecular basis of the egg toxicity was discussed. CONCLUSIONS: The eggs of black widow spiders are rich in proteinous compounds particularly the high-molecular-mass proteins with different types of biological activity The neurotoxic and other active compounds in the eggs are believed to play important roles in the eggs' toxic actions.


Assuntos
Animais , Camundongos , Ratos , Óvulo/química , Extratos de Tecidos/química , Viúva Negra/química , Proteínas de Artrópodes/toxicidade , Óvulo/fisiologia , Nervo Frênico/efeitos dos fármacos , Extratos de Tecidos/toxicidade , Canais de Cálcio/efeitos dos fármacos , Baratas/efeitos dos fármacos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/efeitos dos fármacos , Exoesqueleto/fisiologia , Exoesqueleto/química , Proteínas de Artrópodes/isolamento & purificação , Canais de Sódio Disparados por Voltagem/efeitos dos fármacos , Gânglios Espinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA