Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 345: 123503, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38331243

RESUMO

Methyl jasmonate (MeJA), a crucial phytohormone, which plays an important role in resistance to Cadmium (Cd) stress. The cell wall (CW) of root system is the main location of Cd and plays a key role in resistance to Cd toxicity. However, the mechanism effect of MeJA on the CW composition and Cd accumulation remain unclear. In this study, the contribution of MeJA in regulating CW structure, pectin composition and Cd accumulation was investigated in Cosmos bipinnatus. Phenotypic results affirm MeJA's significant role in reducing Cd-induced toxicity in C. bipinnatus. Notably, MeJA exerts a dual impact, reducing Cd uptake in roots while increasing Cd accumulation in the CW, particularly bound to pectin. The molecular structure of pectin, mainly uronic acid (UA), correlates positively with Cd content, consistent in HC1 and cellulose, emphasizing UA as pivotal for Cd binding. Furthermore, MeJA modulates pectin methylesterase (PME) activity under Cd stress, influencing pectin's molecular structure and homogalacturonan (HG) content affecting Cd-binding capacity. Chelate-soluble pectin (CSP) within soluble pectins accumulates a substantial Cd proportion, with MeJA regulating both UA content and the minor component 3-deoxy-oct-2-ulosonic acid (Kdo) in CSP. The study delves into the intricate regulation of pectin monosaccharide composition under Cd stress, revealing insights into the CW's physical defense and Cd binding. In summary, this research provides novel insights into MeJA-specific mechanisms alleviating Cd toxicity in C. bipinnatus, shedding light on complex interactions between MeJA, and Cd accumulation in CW pectin polysaccharide.


Assuntos
Acetatos , Asteraceae , Cádmio , Ciclopentanos , Oxilipinas , Cádmio/metabolismo , Raízes de Plantas/metabolismo , Polissacarídeos/metabolismo , Polissacarídeos/farmacologia , Pectinas/química , Parede Celular/metabolismo , Asteraceae/metabolismo
2.
Plants (Basel) ; 12(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37960085

RESUMO

Drought is among the most important abiotic stresses on plants, so research on the physiological regulation mechanisms of plants under drought stress can critically increase the economic and ecological value of plants in arid regions. In this study, the effects of drought stress on the growth status and biochemical indicators of Iris japonica were explored. Under drought stress, the root system, leaves, rhizomes, and terrestrial stems of plants were sequentially affected; the root system was sparse and slender; and the leaves lost their luster and gradually wilted. Among the physiological changes, the increase in the proline and soluble protein content of Iris japonica enhanced the cellular osmotic pressure and reduced the water loss. In anatomical structures, I. japonica chloroplasts were deformed after drought treatment, whereas the anatomical structures of roots did not substantially change. Plant antioxidant systems play an important role in maintaining cellular homeostasis; but, as drought stress intensified, the soluble sugar content of terrestrial stems was reduced by 55%, and the ascorbate peroxidase, glutathione reductase, and monodehydroascorbate reductase (MDHAR) activities of leaves and the MDHAR activity of roots were reduced by 29%, 40%, 22%, and 77%, respectively. Overall, I. japonica was resistant to 63 days of severe drought stress and resisted drought through various physiological responses. These findings provide a basis for the application of I. japonica in water-scarce areas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...