Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.262
Filtrar
2.
J Sci Food Agric ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829244

RESUMO

BACKGROUND: Bacterial fruit blotch (BFB), known as the 'cancer' of cucurbits, is a seed-borne disease of melons caused by Acidovorax citrulli. Traditional chemical treatments for BFB are ineffective and adversely affect the environment. Using dielectric barrier discharge (DBD) nanosecond-pulsed plasma technology, melon seeds were treated to promote germination and growth and to control BFB. RESULTS: Based on the evaluation parameters of seed germination, seedling growth, leaf yellowing and bacterial infection after seed plasma treatments, 9 min at 20 kV was selected as the optimal plasma discharge parameter. In this study, seedling growth was significantly improved after treating melon seeds carrying A. citrulli using this discharge parameter. The number of first true leaves measured on the eighth day was 2.3 times higher and the disease index was reduced by 60.5% compared to the control group. Attenuated total reflectance-Fourier transform infrared measurements show that plasma treatments penetrate the seed coat and denature polysaccharides and proteins in the seed kernel, affecting their growth and sterilization properties. CONCLUSION: Pre-sowing treatment of melon seeds carrying A. citrulli using nanosecond-pulsed plasma technology can effectively control seedling BFB disease and promote melon seedling growth by optimizing DBD parameters. © 2024 Society of Chemical Industry.

3.
Cell Rep ; 43(6): 114316, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38833370

RESUMO

Phosphate (Pi) serves countless metabolic pathways and is involved in macromolecule synthesis, energy storage, cellular signaling, and bone maintenance. Herein, we describe the coordination of Pi uptake and efflux pathways to maintain mammalian cell Pi homeostasis. We discover that XPR1, the presumed Pi efflux transporter, separately supervises rates of Pi uptake. This direct, regulatory interplay arises from XPR1 being a binding partner for the Pi uptake transporter PiT1, involving a predicted transmembrane helix/extramembrane loop in XPR1, and its hitherto unknown localization in a subset of intracellular LAMP1-positive puncta (named "XLPVs"). A pharmacological mimic of Pi homeostatic challenge is sensed by the inositol pyrophosphate IP8, which functionalizes XPR1 to respond in a temporally hierarchal manner, initially adjusting the rate of Pi efflux, followed subsequently by independent modulation of PiT1 turnover to reset the rate of Pi uptake. These observations generate a unifying model of mammalian cellular Pi homeostasis, expanding opportunities for therapeutic intervention.

4.
Langmuir ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842118

RESUMO

The rebound dynamics of double droplets impacting an inclined superhydrophobic surface decorated with macro-ridges are investigated via lattice Boltzmann method (LBM) simulations. Four rebound regions are identified, that is, the no-coalescence-rebound (NCR), the partial-coalescence-rebound of the middle part bounces first (PCR-M), and the side part bounces first (PCR-S), as well as the complete-coalescence-rebound (CCR). The occurrence of the rebound regions strongly depends on the droplet arrangement, the center-to-center distance of the droplets, and the Weber number. Furthermore, the contact time is closely related to the rebound regions. The PCR-M region can significantly reduce the contact time because the energy dissipation in this region may decrease which can promote the rebound dynamic. Intriguingly, the contact time is also affected by the droplet arrangement; i.e., droplets arranged parallel to the ridge dramatically shorten the contact time since this arrangement increases the asymmetry of the liquid film. Therefore, for multidrop impact, the contact time can be effectively manipulated by changing the rebound region and the droplet arrangement. This work focuses on elucidating the wetting behaviors, rebound regions, and contact time of the multiple-droplet impacting an inclined superhydrophobic surface decorated with macro-ridges.

5.
Heliyon ; 10(7): e26474, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38689967

RESUMO

Corporate procurement management assumes a pivotal role within the contemporary business landscape, yet confronts an array of challenges as markets continue to evolve and globalize. Conventional procurement management systems frequently grapple with issues of inefficiency, resource depletion, and noncompliance, necessitating the exploration of innovative avenues for optimization. This paper delves into the realm of risk mitigation associated with collusion behavior in the administration of intelligent procurement systems, presenting a novel procurement collusion identification model founded on a convolutional neural network (CNN) with reinforcement learning techniques. This framework commences with the application of a CNN and Long Short-Term Memory (LSTM) network for in-depth feature analysis and initial identification of historical procurement data, subsequently leveraging reinforcement learning methodologies to enhance the model's autonomy and intelligence for the purpose of optimization. Throughout the experimental phase, diverse domains of procurement data were meticulously selected for analysis. The empirical findings unequivocally demonstrate the model's proficiency, with an average recognition accuracy of 95.1% across five publicly available datasets. This performance surpasses existing machine learning methodologies employed in contemporary research and common recognition networks, thereby offering a pioneering reference point for the intelligent administration and optimization of future procurement systems.

6.
Int J Gen Med ; 17: 1635-1649, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706742

RESUMO

Kidney stones refer to abnormal crystal formation that occurs in the kidney. Among a variety of components of kidney stones, calcium oxalate (CaOx) is the most common type. Despite many efforts to investigate the pathogenesis of CaOx stones, the pathogenesis remains an issue of debate. With high occurrence and recurrence, individuals with stone formation are prone to frequently consult a doctor and to be hospitalized, and the treatment of kidney stones poses a heavy burden on the patients. Concerns should be focused not only on treatment but also on prevention. Herein, we reviewed the studies on prevention methods of CaOx stones through diet, lifestyle, and medication extending until the current time frame. As hyperoxaluria is the most common metabolic disorder among CaOx stone formations, we also included several studies on the treatment and prevention of hyperoxaluria. Our objective was to outline the effective methods to prevent renal CaOx stone formation.

7.
Front Pharmacol ; 15: 1395344, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38803431

RESUMO

Background: Umbilical artery thrombosis (UAT) is a rare complication of pregnancy and is associated with adverse pregnancy outcomes, including fetal intrauterine distress, intrauterine growth restriction, and still birth. UAT is unpredictable, and prenatal diagnosis is challenging. There is no consensus on the treatment strategy of UAT, especially for patients with prenatal detection of one of the umbilical artery embolisms. In most previous cases, an emergency cesarean section was performed, or intrauterine fetal death occurred at the time of UAT diagnosis. Case presentation: In this report, we describe a case of thrombosis in one of the umbilical arteries detected by routine ultrasonography at 31+3 weeks of gestation in a 34-year-old woman. Following expectant management with intensive monitoring for 4 four days, an emergency cesarean section was performed because of abnormal fetal umbilical cord blood flow and middle cerebral artery blood flow; the newborn was in good condition at birth. The final umbilical cord histopathology revealed thrombosis in one of the umbilical arteries. Both mother and newborn described in this case underwent long-term follow-up for nearly 2 two years and are currently in good health without any complications. Conclusions: Based on our experience, obstetricians should comprehensively consider the current gestational age and fetal intrauterine status when UAT is suspected to determine the best delivery time. The appropriate gestational age should be prolonged as long as the mother and fetus are stable when the fetus is immature, trying our best to complete the corticosteroid treatment to promote fetal lung maturity and magnesium sulfate to protect fetal brain. During expectant management, ultrasound monitoring, electronic fetal heart monitoring, and fetal movement counting should be strengthened. Clinicians should ensure that the patients and their families are informed about all potential risks of expectant management for UAT.

8.
Cytotechnology ; 76(3): 351-361, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38736728

RESUMO

Pancreatic cancer is difficult to manage owing to the challenges involved in its treatment and nursing. This study aimed to clarify the roles and mechanisms of action of Poly (A)-binding protein cytoplasmic 1 (PABPC1) on pancreatic cancer. The expression of PABPC1 in pancreatic cancer tissues and cell lines was detected using RT-qPCR and western blotting. The effects of PABPC1 on proliferation, apoptosis, epithelial-mesenchymal transition (EMT), and the PI3K/AKT signaling pathway in pancreatic cancer cells were further investigated using MTT assays, flow cytometry, and western blotting. The expression of PABPC1 was significantly upregulated in pancreatic cancer tissues and cells, whereas PABPC1 downregulation inhibited pancreatic cancer cell proliferation, induced apoptosis, decreased the expression of EMT-associated proteins, and exerted a regulatory effect by inhibiting the PI3K/AKT signaling pathway. In addition, the findings indicated that PABPC1 over-expression significantly promoted pancreatic cancer cell proliferation, inhibited apoptosis, decreased the expression of E-cadherin, enhanced N-cadherin expression, and activating the PI3K/AKT signaling pathway. PABPC1 silencing significantly inhibited proliferation and EMT and induced apoptosis in pancreatic cancer cells. These findings provide novel insights into the role of PABPC1 in the development of pancreatic cancer. Supplementary Information: The online version contains supplementary material available at 10.1007/s10616-024-00626-1.

9.
Front Oncol ; 14: 1368996, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756660

RESUMO

Malignant peripheral nerve sheath tumors (MPNSTs) are a complex group of malignant tumors originating from nerve cells or benign peripheral nerve sheath tumors and are commonly found in major plexus/nerve root sites such as the limbs, head, and neck. Malignant peripheral nerve sheath tumors originating in the ureter are extremely rare. Herein, we report the case of a 63-year-old patient with a malignant peripheral nerve sheath tumor of the right ureter who underwent laparoscopic radical resection of the right kidney and ureter. The patient also had stage 5 chronic kidney disease (CKD). Therefore, chemotherapy and radiotherapy were not considered. No tumor recurrence was observed during the follow-up period.

10.
Environ Res ; 254: 119152, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38754612

RESUMO

Several soil functions of alpine wetland depend on microbial communities, including carbon storage and nutrient cycling, and soil microbes are highly sensitive to hydrological conditions. Wetland degradation is often accompanied by a decline in water table. With the water table drawdown, the effects of microbial network complexity on various soil functions remain insufficiently understood. In this research, we quantified soil multifunctionality of flooded and non-flooded sites in the Lalu Wetland on the Tibetan Plateau. We employed high-throughput sequencing to investigate the microbial community responses to water table depth changes, as well as the relationships between microbial network properties and soil multifunctionality. Our findings revealed a substantial reduction in soil multifunctionality at both surface and subsurface soil layers (0-20 cm and 20-40 cm) in non-flooded sites compared to flooded sites. The α-diversity of bacteria in the surface soil of non-flooded sites was significantly lower than that in flooded sites. Microbial network properties (including the number of nodes, number of edges, average degree, density, and modularity of co-occurrence networks) exhibited significant correlations with soil multifunctionality. This study underscores the adverse impact of non-flooded conditions resulting from water table drawdown on soil multifunctionality in alpine wetland soils, driven by alterations in microbial community structure. Additionally, we identified soil pH and moisture content as pivotal abiotic factors influencing soil multifunctionality, with microbial network complexity emerging as a valuable predictor of multifunctionality.

11.
Eur J Med Chem ; 274: 116536, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38805936

RESUMO

G-quadruplexes (G4s) are commonly formed in the G-rich strand of telomeric DNA. Ligands targeting telomeric G4 induce DNA damage and telomere dysfunction, which makes them potential antitumor drugs. New telomeric G4 ligands with drug-likeness are still needed to be exploited, especially with their antitumor mechanisms thoroughly discussed. In this study, a novel series of quinoxaline analogs were rationally designed and synthesized. Among them, R1 was the most promising ligand for its cytotoxic effects on tumor cells and stabilizing ability with telomeric G4. Cellular assays illustrated that R1 stabilized G4 and induced R-loop accumulation in the telomeric regions, subsequently triggering DNA damage responses, cell cycle arrest in G2/M phase, apoptosis and antiproliferation. Moreover, R1 evoked immunogenic cell death (ICD) in tumor cells, which promoted the maturation of bone marrow derived dendritic cells (BMDCs). In breast cancer mouse model, R1 exhibited a significant decrease in tumor burden through the immunomodulatory effects, including the increase of CD4+ and CD8+ T cells in tumors and cytokine levels in sera. Our research provides a new idea that targeting telomeric G4 induces DNA damage responses, causing antitumor effects both in vitro and in vivo, partially due to the enhancement of immunomodulation.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38809740

RESUMO

In this article, we propose a novel spectral tensor layer for communication-free distributed deep learning. The overall framework is as follows: first, we represent the data in tensor form (instead of vector form) and replace the matrix product in conventional neural networks with the tensor product, which in effect imposes certain transformed-induced structure on the original weight matrices, e.g., a block-circulant structure; then, we apply a linear transform along a certain dimension to split the original dataset into multiple spectral subdatasets; as a result, the proposed spectral tensor network consists of parallel branches where each branch is a conventional neural network trained on a spectral subdataset with ZERO communication cost. The parallel branches are directly ensembled (i.e., the weighted sum of their outputs) to generate an overall network with substantially stronger generalization capability than that of each branch. Moreover, the proposed method enjoys a byproduct of decentralization gain in terms of memory and computation, compared with traditional networks. It is a natural yet elegant solution for heterogeneous data in federated learning (FL), where data at different nodes have different resolutions. Finally, we evaluate the proposed spectral tensor networks on the MNIST, CIFAR-10, ImageNet-1K, and ImageNet-21K datasets, respectively, to verify that they simultaneously achieve communication-free distributed learning, distributed storage reduction, parallel computation speedup, and learning with multiresolution data.

13.
Biomedicines ; 12(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38790950

RESUMO

Obesity results in hepatic fat accumulation, i.e., steatosis. In addition to fat overload, impaired fatty acid ß-oxidation also promotes steatosis. Fatty acid ß-oxidation takes place in the mitochondria and peroxisomes. Usually, very long-chain and branched-chain fatty acids are the first to be oxidized in peroxisomes, and the resultant short chain fatty acids are further oxidized in the mitochondria. Peroxisome biogenesis is regulated by peroxin 16 (PEX16). In liver-specific PEX16 knockout (Pex16Alb-Cre) mice, hepatocyte peroxisomes were absent, but hepatocytes proliferated, and liver mass was enlarged. These results suggest that normal liver peroxisomes restrain hepatocyte proliferation and liver sizes. After high-fat diet (HFD) feeding, body weights were increased in PEX16 floxed (Pex16fl/fl) mice and adipose-specific PEX16 knockout (Pex16AdipoQ-Cre) mice, but not in the Pex16Alb-Cre mice, suggesting that the development of obesity is regulated by liver PEX16 but not by adipose PEX16. HFD increased liver mass in the Pex16fl/fl mice but somehow reduced the already enlarged liver mass in the Pex16Alb-Cre mice. The basal levels of serum triglyceride, free fatty acids, and cholesterol were decreased, whereas serum bile acids were increased in the Pex16Alb-Cre mice, and HFD-induced steatosis was not observed in the Pex16Alb-Cre mice. These results suggest that normal liver peroxisomes contribute to the development of liver steatosis and obesity.

14.
Int J Mol Sci ; 25(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38791167

RESUMO

Polyethylene glycol can abrogate plant seed dormancy and alleviate salt-alkali stress damage to plants, but its role in embryonic dormancy abrogation and germination in Sorbus pohuashanensis is not yet clear. The mechanism by which polyethylene glycol promotes the release of embryonic dormancy may be related to the synthesis and metabolism of endogenous hormones, reactive oxygen species and reactive nitrogen. In this article, germination in indoor culture dishes was used, and the most suitable conditions for treating S. pohuashanensis embryos, with polyethylene glycol (PEG) and sodium carbonate (Na2CO3), were selected. Germination was observed and recorded, and related physiological indicators such as endogenous hormones, reactive oxygen species and reactive nitrogen were measured and analyzed to elucidate the mechanism of polyethylene glycol in alleviating salt-alkali stress in S. pohuashanensis embryos. The results showed that soaking seeds in 5% PEG for 5 days is the best condition to promote germination, which can increase the germination rate of embryos under salt-alkali stress by 1-2 times and improve indicators such as germination speed and the germination index. Polyethylene glycol led to an increase in gibberellin (GA), indole-3-acetic acid (IAA), ethylene (ETH), cytokinin (CTK), nitric oxide (NO), soluble protein and soluble sugar in the embryos under salt-alkali stress; increased activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), nitrate reductase (NR) and nitric oxide synthase (NOS) in the embryos; a reduction in the accumulation of abscisic acid (ABA), hydrogen peroxide (H2O2) and malondialdehyde (MDA). Therefore, it is suggested that the inhibitory effect of polyethylene glycol on the salt-alkali-stress-induced germination of S. pohuashanensis embryos is closely related to the response of endogenous hormones, reactive oxygen species and nitric oxide signalling.


Assuntos
Germinação , Óxido Nítrico , Reguladores de Crescimento de Plantas , Polietilenoglicóis , Espécies Reativas de Oxigênio , Sementes , Polietilenoglicóis/farmacologia , Germinação/efeitos dos fármacos , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Sementes/metabolismo , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Estresse Fisiológico , Álcalis , Dormência de Plantas/efeitos dos fármacos
15.
ACS Appl Mater Interfaces ; 16(19): 24781-24795, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38695117

RESUMO

Aqueous zinc-ion batteries (ZIBs) are regarded as a type of promising energy-storage device because of their high safety and low cost, and polyaniline (PANI) is normally employed as a cathode material for ZIBs owing to its unique electrochemical properties and high environmental stability. However, a low specific capacity and a short cycle life limit the development and applications of PANI-based electrodes. Herein, we have developed a novel type of highly stable PANI-based cathode material enabled by phosphene (PR) for aqueous Zn-PANI batteries through in situ chemical oxidative polymerization. The introduction of PR nanoflakes not only inhibits the degradation of PANI and generates more active sites for Zn2+ storage but also enables a synergistic effect of the Zn2+ insertion/extraction and P-Zn alloying reaction. This promotes a high reversible specific capacity of 240.2 mAh g-1 at 0.2 A g-1 and excellent rate performance for the PR/PANI nanocomposite cathode material. Compared to the pristine PANI cathode material, the PR/PANI nanocomposite cathode material is more suitable for the Zn-PANI battery, thanks to its higher specific capacity and better cycle stability. This study provides an innovative approach for developing the next generation of reliable PR-based electrode materials for aqueous energy-storage devices.

16.
Sensors (Basel) ; 24(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38732862

RESUMO

Online monitoring and real-time feedback on inclusions in molten metal are essential for metal quality control. However, existing methods for detecting aluminum melt inclusions face challenges, including interference, prolonged processing times, and latency. This paper presents the design and development of an online monitoring system for molten metal inclusions. Initially, the system facilitates real-time adjustment of signal acquisition parameters through a multiplexer. Subsequently, it employs a detection algorithm capable of swiftly extracting pulse peaks, with this task integrated into our proprietary host computer software to ensure timely detection and data visualization. Ultimately, we developed a monitoring device integrated with this online monitoring system, enabling the online monitoring of the aluminum alloy filtration process. Our findings indicate that the system can accurately measure the size and concentration of inclusions during the filtration process in real time, offering enhanced detection speed and stability compared to the industrial LiMCA CM (liquid metal cleanliness analyzer continuous monitoring) standard. Furthermore, our evaluation of the filtration process demonstrates that the effectiveness of filtration significantly improves with the increase in inclusion sizes, and the synergistic effect of combining CFF (ceramic foam filter) and MCF (metallics cartridge filter) filtration methods exceeds the performance of the CFF method alone. This system thus provides valuable technical support for optimizing filtration processes and controlling inclusion quality.

17.
Sensors (Basel) ; 24(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38732873

RESUMO

Traditional methods for assessing the cleanliness of liquid metal are characterized by prolonged detection times, delays, and susceptibility to variations in sampling conditions. To address these limitations, an online cleanliness-analyzing system grounded in the method of the electrical sensing zone has been developed. This system facilitates real-time, in situ, and quantitative analysis of inclusion size and amount in liquid metal. Comprising pneumatic, embedded, and host computer modules, the system supports the continuous, online evaluation of metal cleanliness across various metallurgical processes in high-temperature environments. Tests conducted with gallium liquid at 90 °C and aluminum melt at 800 °C have validated the system's ability to precisely and quantitatively detect inclusions in molten metal in real time. The detection procedure is stable and reliable, offering immediate data feedback that effectively captures fluctuations in inclusion amount, thereby meeting the metallurgical industry's demand for real-time analyzing and control of inclusion cleanliness in liquid metal. Additionally, the system was used to analyze inclusion size distribution during the hot-dip galvanizing process. At a zinc melt temperature of 500 °C, it achieved a detection limit of 21 µm, simultaneously providing real-time data on the size and amount distribution of inclusions. This represents a novel strategy for the online monitoring and quality control of zinc slag throughout the hot-dip galvanizing process.

18.
Langmuir ; 40(20): 10759-10768, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38712734

RESUMO

Bouncing dynamics of a trailing drop off-center impacting a leading drop with varying time intervals and Weber numbers are investigated experimentally. Whether the trailing drop impacts during the spreading or receding process of the leading drop is determined by the time interval. For a short time interval of 0.15 ≤ Δt* ≤ 0.66, the trailing drop impacts during the spreading of the leading drop, and the drops completely coalesce and rebound; for a large time interval of 0.66 < Δt* ≤ 2.21, the trailing drop impacts during the receding process, and the drops partially coalesce and rebound. Whether the trailing drop directly impacts the surface or the liquid film of the leading drop is determined by the Weber number. The trailing drop impacts the surface directly at moderate Weber numbers of 16.22 ≤ We ≤ 45.42, while it impacts the liquid film at large Weber numbers of 45.42 < We ≤ 64.88. Intriguingly, when the trailing drop impacts the surface directly or the receding liquid film, the contact time increases linearly with the time interval but independent of the Weber number; when the trailing drop impacts the spreading liquid film, the contact time suddenly increases, showing that the force of the liquid film of the leading drop inhibits the receding of the trailing drop. Finally, a theoretical model of the contact time for the drops is established, which is suitable for different impact scenarios of the successive off-center impact. This study provides a quantitative relationship to calculate the contact time of drops successively impacting a superhydrophobic surface, facilitating the design of anti-icing surfaces.

19.
Comput Struct Biotechnol J ; 23: 2122-2131, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38817963

RESUMO

B-cell epitope identification plays a vital role in the development of vaccines, therapies, and diagnostic tools. Currently, molecular docking tools in B-cell epitope prediction are heavily influenced by empirical parameters and require significant computational resources, rendering a great challenge to meet large-scale prediction demands. When predicting epitopes from antigen-antibody complex, current artificial intelligence algorithms cannot accurately implement the prediction due to insufficient protein feature representations, indicating novel algorithm is desperately needed for efficient protein information extraction. In this paper, we introduce a multimodal model called WUREN (Whole-modal Union Representation for Epitope predictioN), which effectively combines sequence, graph, and structural features. It achieved AUC-PR scores of 0.213 and 0.193 on the solved structures and AlphaFold-generated structures, respectively, for the independent test proteins selected from DiscoTope3 benchmark. Our findings indicate that WUREN is an efficient feature extraction model for protein complexes, with the generalizable application potential in the development of protein-based drugs. Moreover, the streamlined framework of WUREN could be readily extended to model similar biomolecules, such as nucleic acids, carbohydrates, and lipids.

20.
J Colloid Interface Sci ; 670: 114-123, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38759266

RESUMO

For high energy density lithium-ion batteries (LIBs) with nickel-rich ternary cathodes, the chemical degradation of electrolytes caused by free radical reactions and the hazards of thermal runaway have always been significant challenges. Inspired by the free radical scavenging of living organisms and multiphase synergistic flame retardant mechanism, we innovatively designed and prepared a multifunctional flame retardant HCCP-TMP that combines flame retardancy and free radical scavenging by combining hindered amine and cyclophosphazene. Only 1 wt% HCCP-TMP can make the polyacrylate-based gel polymer electrolyte (GPE) incombustible. Moreover, the equipped NCM811//Graphite pouch cells don't exhibit combustion behavior after thermal runaway and can resist mechanical abuse. Based on the above noncombustible GPE, the NCM811//Li battery exhibits capacity retention rate of 82.2 % after 100 cycles at a current density of 2 C and in the voltage range of 3.0-4.7 V, exhibiting excellent cyclability under high voltage. This simple molecular design simultaneously improves the fire safety and high voltage stability, demonstrating enormous application potential in the field of advanced LIBs with high safety and high energy density.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...