Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Plant Physiol ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38875158

RESUMO

Cold stress declines the quality and yield of tea, yet the molecular basis underlying cold tolerance of tea plants (Camellia sinensis) remains largely unknown. Here, we identified a circadian rhythm component LUX ARRHYTHMO (LUX) that potentially regulates cold tolerance of tea plants through a genome-wide association study and transcriptomic analysis. The expression of CsLUX phased with sunrise and sunset and was strongly induced by cold stress. Genetic assays indicated that CsLUX is a positive regulator of freezing tolerance in tea plants. CsLUX was directly activated by CsCBF1 and repressed the expression level of CsLOX2, which regulates the cold tolerance of tea plants through dynamically modulating jasmonic acid content. Furthermore, we showed that the CsLUX-CsJAZ1 complex attenuated the physical interaction of CsJAZ1 with CsICE1, liberating CsICE1 with transcriptional activities to withstand cold stress. Notably, a single-nucleotide variation of C-to-A in the coding region of CsLUX was functionally validated as the potential elite haplotype for cold response, which provided valuable molecular markers for future cold resistance breeding in tea plants.

2.
Plant Mol Biol ; 114(3): 44, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630172

RESUMO

Albino tea cultivars have high economic value because their young leaves contain enhanced free amino acids that improve the quality and properties of tea. Zhonghuang 1 (ZH1) and Zhonghuang 2 (ZH2) are two such cultivars widely planted in China; however, the environmental factors and molecular mechanisms regulating their yellow-leaf phenotype remain unclear. In this study, we demonstrated that both ZH1 and ZH2 are light- and temperature-sensitive. Under natural sunlight and low-temperature conditions, their young shoots were yellow with decreased chlorophyll and an abnormal chloroplast ultrastructure. Conversely, young shoots were green with increased chlorophyll and a normal chloroplast ultrastructure under shading and high-temperature conditions. RNA-seq analysis was performed for high light and low light conditions, and pairwise comparisons identified genes exhibiting different light responses between albino and green-leaf cultivars, including transcription factors, cytochrome P450 genes, and heat shock proteins. Weighted gene coexpression network analyses of RNA-seq data identified the modules related to chlorophyll differences between cultivars. Genes involved in chloroplast biogenesis and development, light signaling, and JA biosynthesis and signaling were typically downregulated in albino cultivars, accompanied by a decrease in JA-ILE content in ZH2 during the albino period. Furthermore, we identified the hub genes that may regulate the yellow-leaf phenotype of ZH1 and ZH2, including CsGDC1, CsALB4, CsGUN4, and a TPR gene (TEA010575.1), which were related to chloroplast biogenesis. This study provides new insights into the molecular mechanisms underlying leaf color formation in albino tea cultivars.


Assuntos
Albinismo , Perfilação da Expressão Gênica , Temperatura , Temperatura Baixa , Clorofila
3.
Polymers (Basel) ; 16(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38675069

RESUMO

Polyether ether ketone (PEEK) is esteemed as a high-performance engineering polymer renowned for its exceptional mechanical properties and thermal stability. Nonetheless, the majority of polymer-based lubricating materials fail to meet the contemporary industrial demands for motion components regarding high speed, heavy loading, temperature resistance, and precise control. Utilizing 3D printing technology to design and fabricate intricately structured components, developing high-performance polymer self-lubricating materials becomes imperative to fulfill the stringent operational requirements of motion mechanisms. This study introduces a novel approach employing 3D printing technology to produce PEEK with varying filling densities and conducting in situ synthesis of zeolitic imidazolate framework (ZIF-8) nanomaterials on its surface to enhance PEEK's frictional performance. The research discusses the synthetic methodology, characterization techniques, and tribological performance evaluation of in situ synthesized ZIF-8 nanomaterials on PEEK surfaces. The findings demonstrate a significant enhancement in frictional performance of the composite material under low-load conditions, achieving a minimum wear rate of 4.68 × 10-6 mm3/N·m compared to the non-grafted PEEK material's wear rate of 1.091 × 10-5 mm3/N·m, an approximately 1.3 times improvement. Detailed characterization and analysis of the worn surface of the steel ring unveil the lubrication mechanism of the ZIF-8 nanoparticles, thereby presenting new prospects for the diversified applications of PEEK.

4.
Se Pu ; 42(4): 368-379, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38566426

RESUMO

Pesticide residues may be present in olive oil because pesticides are applied to olive trees during their cultivation and growth for pest prevention and some of these pesticides are not easily degraded. Studies on pesticide residues in olive oil have mainly focused on the detection of single types of pesticide residues, and reports on the simultaneous detection of multiple pesticide residues are limited. At present, hundreds of pesticides with different polarities and chemical properties are used in practice. In this study, an analytical method based on fully automatic QuEChERS pretreatment instrument coupled with gas chromatography-quadrupole time-of-flight mass spectrometry (GC-QTOF-MS) was established for the rapid determination of 222 pesticide residues in olive oil. The effects of acetonitrile acidification concentration, n-hexane volume, oscillation time, centrifugation temperature, and purification agent on the determination of the 222 pesticide residues were investigated. First, ions with good responses and no obvious interference were selected for quantification and characterization. The purification process was then developed by setting the parameters of the fully automatic QuEChERS pretreatment instrument to optimal values. The sample was extracted with acetonitrile containing 2% formic acid, and the supernatant was purified by centrifugation in a centrifuge tube containing 400 mg N-propylethylenediamine (PSA), 400 mg octadecylsilane-bonded silica gel (C18), and 1200 mg anhydrous magnesium sulfate. The purified solution was blown dry with nitrogen and then fixed with ethyl acetate for instrumental analysis. Finally, a matrix standard solution was used for quantification. The method was validated in terms of matrix effects, linear ranges, limits of detection (LODs) and quantification (LOQs), accuracies, and precisions. The results showed that 86.04% of the 222 pesticides had linear ranges of 0.02-2.00 µg/mL, 10.81% had linear ranges of 0.10-2.00 µg/mL, and 3.15% had linear ranges of 0.20-2.00 µg/mL. The pesticide residues showed good relationships within their respective linear ranges, and the correlation coefficients (R2) were greater than 0.99. The LODs of all tested pesticides ranged from 0.002 to 0.050 mg/kg, and their LOQs ranged from 0.007 to 0.167 mg/kg. Among the 222 pesticides determined, 170 pesticides had LOQs of 0.007 mg/kg while 21 pesticides had LOQs of 0.017 mg/kg. At the three spiked levels of 0.2, 0.5, and 0.8 mg/kg, 79.58% of all tested pesticides had average recoveries of 70%-120% while 65.92% had average recoveries of 80%-110%. In addition, 93.54% of all tested pesticides had relative standard deviations (RSDs, n=6)<10% while 98.35% had RSDs (n=6)<20%. The method was applied to 14 commercially available olive oil samples, and seven pesticides were detected in the range of 0.0044-0.0490 mg/kg. The residues of fenbuconazole, chlorpyrifos, and methoprene did not exceed the maximum limits stated in GB 2763-2021. The maximum residual limits of molinate, monolinuron, benalaxyl, and thiobencarb have not been established. The method utilizes the high mass resolution capability of TOF-MS, which can improve the detection throughput while ensuring good sensitivity. In addition, high-resolution and accurate mass measurements render the screening results more reliable, which is necessary for the high-throughput detection of pesticide residues. The use of a fully automatic QuEChERS instrument in the pretreatment step reduces personnel errors and labor costs, especially when a large number of samples must be processed, thereby offering significant advantages over other approaches. Moreover, the method is simple, rapid, sensitive, highly automatable, accurate, and precise. Thus, it meets requirements for the high-throughput detection of pesticide residues in olive oil and provides a reference for the development of detection methods for pesticide residues in other types of oils as well as the automatic pretreatment of complex matrices.


Assuntos
Resíduos de Praguicidas , Praguicidas , Resíduos de Praguicidas/análise , Azeite de Oliva , Espectrometria de Massas em Tandem/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Praguicidas/análise , Acetonitrilas/análise
5.
Mol Imaging Biol ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641708

RESUMO

BACKGROUND: Previous studies have initially reported accompanying elevated 2-deoxy-2[18F]fluoro-D-glucose ([18F]F-FDG) inflammatory activity in the remote area and its prognostic value after acute myocardial infarction (AMI). Non-invasive characterization of the accompanying inflammation in the remote myocardium may be of potency in guiding future targeted theranostics. [68Ga]Ga-Pentixafor targeting chemokine receptor 4 (CXCR4) on the surface of inflammatory cells is currently one of the promising inflammatory imaging agents. In this study, we sought to focus on the longitudinal evolution of [68Ga]Ga-Pentixafor activities in the remote myocardium following AMI and its association with cardiac function. METHODS: Twelve AMI rats and six Sham rats serially underwent [68Ga]Ga-Pentixafor imaging at pre-operation, and 5, 7, 14 days post-operation. Maximum and mean standard uptake value (SUV) and target-to-background ratio (TBR) were assessed to indicate the uptake intensity. Gated [18F]F-FDG imaging and immunofluorescent staining were performed to obtain cardiac function and responses of pro-inflammatory and reparative macrophages, respectively. RESULTS: The uptake of [68Ga]Ga-Pentixafor in the infarcted myocardium peaked at day 5 (all P = 0.003), retained at day 7 (all P = 0.011), and recovered at day 14 after AMI (P > 0.05), paralleling with the rise-fall pro-inflammatory M1 macrophages (P < 0.05). Correlated with the peak activity in the infarct territory, [68Ga]Ga-Pentixafor uptake in the remote myocardium on day 5 early after AMI significantly increased (AMI vs. Sham: SUVmean, SUVmax, and TBRmean: all P < 0.05), and strongly correlated with contemporaneous EDV and/or ESV (SUVmean and TBRmean: both P < 0.05). The transitory remote activity recovered as of day 7 post-AMI (AMI vs. Sham: P > 0.05). CONCLUSIONS: Corresponding with the peaked [68Ga]Ga-Pentixafor activity in the infarcted myocardium, the activity in the remote region elevated accordingly and led to contemporaneous left ventricular remodelling early after AMI. Further studies are warranted to clarify its clinical application potential.

6.
Anal Biochem ; 690: 115491, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38460901

RESUMO

Bioactive peptides can hinder oxidative processes and microbial spoilage in foodstuffs and play important roles in treating diverse diseases and disorders. While most of the methods focus on single-functional bioactive peptides and have obtained promising prediction performance, it is still a significant challenge to accurately detect complex and diverse functions simultaneously with the quick increase of multi-functional bioactive peptides. In contrast to previous research on multi-functional bioactive peptide prediction based solely on sequence, we propose a novel multimodal dual-branch (MMDB) lightweight deep learning model that designs two different branches to effectively capture the complementary information of peptide sequence and structural properties. Specifically, a multi-scale dilated convolution with Bi-LSTM branch is presented to effectively model the different scales sequence properties of peptides while a multi-layer convolution branch is proposed to capture structural information. To the best of our knowledge, this is the first effective extraction of peptide sequence features using multi-scale dilated convolution without parameter increase. Multimodal features from both branches are integrated via a fully connected layer for multi-label classification. Compared to state-of-the-art methods, our MMDB model exhibits competitive results across metrics, with a 9.1% Coverage increase and 5.3% and 3.5% improvements in Precision and Accuracy, respectively.

7.
Food Chem ; 441: 138341, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38176147

RESUMO

The key components dominating the quality of green tea and black tea are still unclear. Here, we respectively produced green and black teas in March and June, and investigated the correlations between sensory quality and chemical compositions of dry teas by multivariate statistics, bioinformatics and artificial intelligence algorithm. The key chemical indices were screened out to establish tea sensory quality-prediction models based on the result of OPLS-DA and random forest, namely 4 flavonol glycosides of green tea and 8 indices of black tea (4 pigments, epigallocatechin, kaempferol-3-O-rhamnosyl-glucoside, ratios of caffeine/total catechins and epi/non-epi catechins). Compared with OPLS-DA and random forest, the support vector machine model had good sensory quality-prediction performance for both green tea and black tea (F1-score > 0.92), even based on the indices of fresh tea leaves. Our study explores the potential of artificial intelligence algorithm in classification and prediction of tea products with different sensory quality.


Assuntos
Camellia sinensis , Catequina , Chá/química , Inteligência Artificial , Cafeína/análise , Camellia sinensis/química , Catequina/análise , Algoritmos
8.
Plant Physiol Biochem ; 207: 108341, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38266557

RESUMO

Low temperature is one of the most important environmental factors limiting tea plants' geographic distribution and severely affects spring tea's yield and quality. Circadian components contribute to plant responses to low temperatures; however, comparatively little is known about these components in tea plants. In this study, we identified a core clock component the LATE ELONGATED HYPOCOTYL, CsLHY, which is mainly expressed in tea plants' mature leaves, flowers, and roots. Notably, CsLHY maintained its circadian rhythmicity of expression in summer, but was disrupted in winter and held a high expression level. Meanwhile, we found that CsLHY expression rhythm was not affected by different photoperiods but was quickly broken by cold, and the low temperature induced and kept CsLHY expression at a relatively high level. Yeast one-hybrid and dual-luciferase assays confirmed that CsLHY can bind to the promoter of Sugars Will Eventually be Exported Transporters 17 (CsSWEET17) and function as a transcriptional activator. Furthermore, suppression of CsLHY expression in tea leaves not only reduced CsSWEET17 expression but also impaired the freezing tolerance of leaves compared to the control. Our results demonstrate that CsLHY plays a positive role in the low-temperature response of tea plants by regulating CsSWEET17 when considered together.


Assuntos
Camellia sinensis , Temperatura Baixa , Fatores de Transcrição/metabolismo , Camellia sinensis/metabolismo , Ritmo Circadiano , Chá , Regulação da Expressão Gênica de Plantas
9.
Opt Express ; 32(1): 1003-1009, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38175106

RESUMO

We demonstrate a thermoreflectance-based thermometry technique with an ultimate temperature resolution of 60 µK in a 2.6 mHz bandwidth. This temperature resolution was achieved using a 532 nm-wavelength probe laser and a ∼1 µm-thick silicon transducer film with a thermoreflectance coefficient of -4.7 × 10-3 K-1 at room temperature. The thermoreflectance sensitivity reported here is over an order-of-magnitude greater than that of metal transducers, and is comparable to the sensitivity of traditional resistance thermometers. Supporting calculations reveal that the enhancement in sensitivity is due to optical interference in the thin film.

10.
RSC Adv ; 14(4): 2673-2677, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38226147

RESUMO

A ß-naphthol library has been efficiently constructed utilizing a mild continuous flow procedure, relying on a tandem Friedel-Crafts reaction and starting from readily available arylacetyl chloride and alkynes. Multiple functionalized ß-naphthols can be acquired within 160 s in generally high yields (up to 83%). Using an electron-rich phenylacetyl chloride derivative (4-OH- or 4-MeO-) provides spirofused triene dione as the primary product. A scale-up preparation affords a throughput of 4.70 g h-1, indicating potential large-scale application. Herein, we present a rapid, reliable, and scalable method to obtain various ß-naphthols in the compound library.

11.
Plant J ; 117(5): 1356-1376, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38059663

RESUMO

Tea plant [Camellia sinensis (L.) O. Kuntze], as one of the most important commercial crops, frequently suffers from anthracnose caused by Colletotrichum camelliae. The plant-specific tau (U) class of glutathione S-transferases (GSTU) participates in ROS homeostasis. Here, we identified a plant-specific GST tau class gene from tea plant, CsGSTU45, which is induced by various stresses, including C. camelliae infection, by analyzing multiple transcriptomes. CsGSTU45 plays a negative role in disease resistance against C. camelliae by accumulating H2 O2 . JA negatively regulates the resistance of tea plants against C. camelliae, which depends on CsGSTU45. CsMYC2.2, which is the key regulator in the JA signaling pathway, directly binds to and activates the promoter of CsGSTU45. Furthermore, silencing CsMYC2.2 increased disease resistance associated with reduced transcript and protein levels of CsGSTU45, and decreased contents of H2 O2 . Therefore, CsMYC2.2 suppresses disease resistance against C. camelliae by binding to the promoter of the CsGSTU45 gene and activating CsGSTU45. CsJAZ1 interacts with CsMYC2.2. Silencing CsJAZ1 attenuates disease resistance, upregulates the expression of CsMYC2.2 elevates the level of the CsGSTU45 protein, and promotes the accumulation of H2 O2 . As a result, CsJAZ1 interacts with CsMYC2.2 and acts as its repressor to suppress the level of CsGSTU45 protein, eventually enhancing disease resistance in tea plants. Taken together, the results show that the JA signaling pathway mediated by CsJAZ1-CsMYC2.2 modulates tea plant susceptibility to C. camelliae by regulating CsGSTU45 to accumulate H2 O2 .


Assuntos
Camellia sinensis , Colletotrichum , Ciclopentanos , Oxilipinas , Camellia sinensis/genética , Camellia sinensis/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Resistência à Doença/genética , Colletotrichum/fisiologia , Chá/metabolismo , Transdução de Sinais
12.
Neurochirurgie ; 70(1): 101515, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38052154

RESUMO

BACKGROUND: Transsphenoidal surgeons should try to avoid internal carotid artery (ICA) injury but also be prepared to manage it. We analyzed our experience with ICA injury during endoscopic transsphenoidal pituitary surgery and present associated risk factors and a management protocol. METHODS: We retrospectively reviewed and analyzed the medical records of 1596 patients who underwent endoscopic transsphenoidal surgery for pituitary tumor resection in our institution from January 2009 to October 2022. RESULTS: Six patients experienced an ICA injury. All received timely and effective hemostasis with immediate direct tamponade followed by endovascular treatment. No serious postoperative complications occurred. CONCLUSIONS: We proposed a treatment plan for ICA injuries encountered during endoscopic transsphenoidal surgery and described our hemostasis process, methods of endovascular treatment, and means of postoperative follow-up in detail.


Assuntos
Lesões das Artérias Carótidas , Neoplasias Hipofisárias , Humanos , Neoplasias Hipofisárias/cirurgia , Neoplasias Hipofisárias/complicações , Artéria Carótida Interna/cirurgia , Estudos Retrospectivos , Endoscopia/efeitos adversos , Lesões das Artérias Carótidas/etiologia , Lesões das Artérias Carótidas/cirurgia
13.
Physiol Plant ; 175(6): e14064, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148243

RESUMO

Green tea made from albino buds and leaves has a strong umami taste and aroma. The cultivar 'Zhonghuang 2' (ZH2, Camellia sinensis) is a natural mutant with young shoots that are yellow in spring and green or yellow-green in summer. However, the mechanism of leaf color change remains unclear. Here, we found that young shoots of ZH2 were yellow at low temperature (LT) and green at high temperature (HT), indicating that ZH2 is a temperature-sensitive cultivar. Transmission electron microscopy analysis showed that the grana in the chloroplasts of young shoots grown at LT were poorly stacked, which caused a lack of photoreactions and chlorophyll. RNA-seq results showed 1279 genes differentially expressed in the young shoots grown at LT compared with those at HT, including genes related to cytochrome synthesis, chloroplast development, photosynthesis, and DNA methylation. A whole-genome bisulfite sequencing assay revealed that the dynamics of DNA methylation levels in the CG, CHG, and CHH contexts decreased under LT, and the change was most obvious in the CHH context. Furthermore, 72 genes showed significant changes in both expression and DNA methylation levels, and most of them were related to cytochrome synthesis, chloroplast development, photosynthesis, transcription factors, and signaling pathways. These results demonstrate that DNA methylation is involved in the LT-regulated albino processes of ZH2. Changes in DNA methylation levels were associated with changes in gene expression levels, affecting the structure and function of chloroplasts, which may have a phenotypic impact on shoot and leaf color.


Assuntos
Camellia sinensis , Camellia sinensis/genética , Camellia sinensis/metabolismo , Transcriptoma/genética , Temperatura , Clorofila/metabolismo , Citocromos/análise , Citocromos/genética , Citocromos/metabolismo , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/metabolismo
14.
Front Plant Sci ; 14: 1263606, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37936941

RESUMO

The sprouting process of tea buds is an essential determinant of tea quality and taste, thus profoundly impacting the tea industry. Buds spring sprouting is also a crucial biological process adapting to external environment for tea plants and regulated by complex transcriptional and metabolic networks. This study aimed to investigate the molecular basis of bud sprouting in tea plants firstly based on the comparisons of metabolic and transcriptional profiles of buds at different developmental stages. Results notably highlighted several essential processes involved in bud sprouting regulation, including the interaction of plant hormones, glucose metabolism, and reactive oxygen species scavenging. Particularly prior to bud sprouting, the accumulation of soluble sugar reserves and moderate oxidative stress may have served as crucial components facilitating the transition from dormancy to active growth in buds. Following the onset of sprouting, zeatin served as the central component in a multifaceted regulatory mechanism of plant hormones that activates a range of growth-related factors, ultimately leading to the promotion of bud growth. This process was accompanied by significant carbohydrate consumption. Moreover, related key genes and metabolites were further verified during the entire overwintering bud development or sprouting processes. A schematic diagram involving the regulatory mechanism of bud sprouting was ultimately proposed, which provides fundamental insights into the complex interactions involved in tea buds.

15.
Artigo em Inglês | MEDLINE | ID: mdl-37910405

RESUMO

MetaFormer, the abstracted architecture of Transformer, has been found to play a significant role in achieving competitive performance. In this paper, we further explore the capacity of MetaFormer, again, by migrating our focus away from the token mixer design: we introduce several baseline models under MetaFormer using the most basic or common mixers, and demonstrate their gratifying performance. We summarize our observations as follows: (1) MetaFormer ensures solid lower bound of performance. By merely adopting identity mapping as the token mixer, the MetaFormer model, termed IdentityFormer, achieves [Formula: see text]80% accuracy on ImageNet-1 K. (2) MetaFormer works well with arbitrary token mixers. When specifying the token mixer as even a random matrix to mix tokens, the resulting model RandFormer yields an accuracy of [Formula: see text]81%, outperforming IdentityFormer. Rest assured of MetaFormer's results when new token mixers are adopted. (3) MetaFormer effortlessly offers state-of-the-art results. With just conventional token mixers dated back five years ago, the models instantiated from MetaFormer already beat state of the art. (a) ConvFormer outperforms ConvNeXt. Taking the common depthwise separable convolutions as the token mixer, the model termed ConvFormer, which can be regarded as pure CNNs, outperforms the strong CNN model ConvNeXt. (b) CAFormer sets new record on ImageNet-1 K. By simply applying depthwise separable convolutions as token mixer in the bottom stages and vanilla self-attention in the top stages, the resulting model CAFormer sets a new record on ImageNet-1 K: it achieves an accuracy of 85.5% at 224 ×224 resolution, under normal supervised training without external data or distillation. In our expedition to probe MetaFormer, we also find that a new activation, StarReLU, reduces 71% FLOPs of activation compared with commonly-used GELU yet achieves better performance. Specifically, StarReLU is a variant of Squared ReLU dedicated to alleviating distribution shift. We expect StarReLU to find great potential in MetaFormer- like models alongside other neural networks. Code and models are available at https://github.com/sail-sg/metaformer.

16.
Comput Biol Med ; 167: 107588, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37918265

RESUMO

Unknown Protein-Protein Interactions (PPIs) prediction has a huge demand in the biological analysis field. Since the effect of the limited availability of protein data is severe, transferable representations are highly demanded to be learned from various data. The latest works enhance the model performance on unknown PPIs prediction and have achieved certain improvements by combining protein information and relation information on PPI graph. However, such methods inevitably suffer from a so-called information monotonicity problem that limits the improvements when encountering large amounts of unknown PPIs. The prediction performance cannot be actually increased without considering the complementary information and relationship information among various modalities of protein data. To this end, we propose a bilateral-branch learning network to deeply enhance the both complementary and relationship information based on the amino acid sequence and gene ontology from multi- and cross-modal views. Experimental results on massive real-world datasets show that our method significantly outperforms the previous state-of-the-art on both traditional and novel unknown PPIs prediction.


Assuntos
Mapeamento de Interação de Proteínas , Proteínas , Mapeamento de Interação de Proteínas/métodos , Proteínas/metabolismo , Sequência de Aminoácidos
17.
Acta Neurochir (Wien) ; 165(12): 4157-4168, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37999914

RESUMO

BACKGROUND: Advances in microscopic and endoscopic surgical techniques have outpaced traditional classification and transcranial surgical strategies, especially with reference to the treatment of trigeminal schwannomas (TSs). A modified TS classification is proposed and appropriate surgical strategies are discussed. METHODS: The cases of 93 patients who underwent surgical treatment in Beijing Tiantan Hospital in the previous 6 years were analyzed retrospectively, and a literature review was conducted. RESULTS: Classification is based on surgical direction. Tumors were classified as follows: type A, backward orientation, located in the orbit or orbit and middle cranial fossa (8 cases, 8.6%); type B, upward orientation, located in the pterygopalatine fossa, infratemporal fossa or pterygopalatine fossa, infratemporal fossa, and middle cranial fossa (23 cases, 24.7%); type C, forward and backward orientations, located in the middle cranial fossa, posterior cranial fossa or both (58 cases, 62.4%); and type D, located in multiple regions (4 cases, 4.3%). 91.40% of patients underwent gross total resection (GTR) with 29 cases receiving endoscopic resection of whom 93.10% (27/29) experienced GTR. CONCLUSION: The 93 cases were satisfactorily divided into four types, according to tumor location and surgical orientation, enabling safe and effective removal by appropriate surgery.


Assuntos
Neoplasias dos Nervos Cranianos , Neurilemoma , Humanos , Estudos Retrospectivos , Neoplasias dos Nervos Cranianos/cirurgia , Neoplasias dos Nervos Cranianos/patologia , Endoscopia , Órbita/patologia , Neurilemoma/cirurgia
18.
Front Plant Sci ; 14: 1268537, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37849840

RESUMO

Tea plants (Camellia sinensis) show discrepancies in selenium accumulation and transportation, the molecular mechanisms of which are not well understood. Hence, we aimed to conduct a systematic investigation of selenium accumulation and transportation mechanisms in different tea cultivars via transcriptome analysis. The Na2SeO3 and Na2SeO4 treatments improved selenium contents in the roots and leaves of three tea cultivars. The high selenium-enrichment ability (HSe) tea cultivars accumulated higher selenium contents in the leaves than did the low selenium-enrichment ability (LSe) tea cultivars. Transcriptome analysis revealed that differentially expressed genes (DEGs) under the Na2SeO3 and Na2SeO4 treatments were enriched in flavonoid biosynthesis in leaves. DEGs under the Na2SeO3 treatment were enriched in glutathione metabolism in the HSe tea cultivar roots compared to those of the LSe tea cultivar. More transporters and transcription factors involved in improving selenium accumulation and transportation were identified in the HSe tea cultivars under the Na2SeO3 treatment than in the Na2SeO4 treatment. In the HSe tea cultivar roots, the expression of sulfate transporter 1;2 (SULTR1;2) and SULTR3;4 increased in response to Na2SeO4 exposure. In contrast, ATP-binding cassette transporter genes (ABCs), glutathione S-transferase genes (GSTs), phosphate transporter 1;3 (PHT1;3), nitrate transporter 1 (NRT1), and 34 transcription factors were upregulated in the presence of Na2SeO3. In the HSe tea cultivar leaves, ATP-binding cassette subfamily B member 11 (ABCB11) and 14 transcription factors were upregulated under the Na2SeO3 treatment. Among them, WRKY75 was explored as a potential transcription factor that regulated the accumulation of Na2SeO3 in the roots of HSe tea cultivars. This study preliminary clarified the mechanism of selenium accumulation and transportation in tea cultivars, and the findings have important theoretical significance for the breeding and cultivation of selenium-enriched tea cultivars.

19.
Polymers (Basel) ; 15(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37688273

RESUMO

Thermoplastic polyurethane (TPU) materials have shown promise in tissue engineering applications due to their mechanical properties and biocompatibility. However, the addition of nanoclays to TPU can further enhance its properties. In this study, the effects of nanoclays on the microstructure, mechanical behavior, cytocompatibility, and proliferation of TPU/nanoclay (TPUNC) composite scaffolds were comprehensively investigated. The dispersion morphology of nanoclays within the TPU matrix was examined using transmission electron microscopy (TEM). It was found that the nanoclays exhibited a well-dispersed and intercalated structure, which contributed to the improved mechanical properties of the TPUNC scaffolds. Mechanical testing revealed that the addition of nanoclays significantly enhanced the compressive strength and elastic resilience of the TPUNC scaffolds. Cell viability and proliferation assays were conducted using MG63 cells cultured on the TPUNC scaffolds. The incorporation of nanoclays did not adversely affect cell viability, as evidenced by the comparable cell numbers between nanoclay-filled and unfilled TPU scaffolds. The presence of nanoclays within the TPUNC scaffolds did not disrupt cell adhesion or proliferation. The incorporation of nanoclays improved the dispersion morphology, enhanced mechanical performance, and maintained excellent biocompatibility. These findings suggest that TPUNC composites have great potential for tissue engineering applications, providing a versatile and promising scaffold material for regenerative medicine.

20.
Int J Mol Sci ; 24(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37373207

RESUMO

Cold stress is a major environmental factor that adversely affects the growth and productivity of tea plants. Upon cold stress, tea plants accumulate multiple metabolites, including ascorbic acid. However, the role of ascorbic acid in the cold stress response of tea plants is not well understood. Here, we report that exogenous ascorbic acid treatment improves the cold tolerance of tea plants. We show that ascorbic acid treatment reduces lipid peroxidation and increases the Fv/Fm of tea plants under cold stress. Transcriptome analysis indicates that ascorbic acid treatment down-regulates the expression of ascorbic acid biosynthesis genes and ROS-scavenging-related genes, while modulating the expression of cell wall remodeling-related genes. Our findings suggest that ascorbic acid treatment negatively regulates the ROS-scavenging system to maintain ROS homeostasis in the cold stress response of tea plants and that ascorbic acid's protective role in minimizing the harmful effects of cold stress on tea plants may occur through cell wall remodeling. Ascorbic acid can be used as a potential agent to increase the cold tolerance of tea plants with no pesticide residual concerns in tea.


Assuntos
Ácido Ascórbico , Camellia sinensis , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Camellia sinensis/metabolismo , Perfilação da Expressão Gênica , Chá/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Temperatura Baixa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...