Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(28): 33633-33642, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37399534

RESUMO

Formate, as an important chemical raw material, is considered to be one of the most promising products for industrialization among CO2 electroreduction reaction (CO2RR) products, but it still suffers from poor selectivity and a low formation rate at a high current density on account of the competitory hydrogen evolution reaction. Herein, the heterogeneous nanostructure was constructed by anchoring In2O3 nanoparticles on poly(3,4-ethylenedioxythiophene) (PEDOT)-modified carbon black (In2O3/PC), in which the PEDOT polymer interface layer could immobilize In2O3 nanoparticles and obtain a notable reduction in electron transfer resistance among the In2O3 particles, showing a 27% increase in the total electron transfer rate. The optimized In2O3/PC with rich heterogeneous interfaces selectively reduced CO2 to formate with a high FE of 95.4% and a current density of 251.4 mA cm-2 under -1.18 V vs RHE. Also, the formate production rate for In2O3/PC was up to 7025.1 µmol h-1 cm-2, surpassing most previously reported CO2RR catalysts. The in situ XRD results revealed that In2O3 particles were reduced to metallic indium (In) as catalytic active sites during CO2RR. DFT calculations verified that a strong interface interaction between In sites and PC induced electron transfer from In sites to PC, which could optimize the charge distribution of active sites, accelerate electron transfer, and elevate the p-band center of In sites toward the Fermi level, thereby lowering the adsorption energy of *OCHO intermediates for CO2 conversion to formate.

2.
ACS Nano ; 16(10): 16343-16352, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36226827

RESUMO

By closing and opening ion channels, electric eels are able to convert ion concentration gradients into electricity. Inspired by electric eels, considerable artificial sub-nanoscale ion channels with high ion selectivity and transportation efficiency have been designed for harvesting the osmotic energy between ionic solutions of different salinities, but constructing smart ion-gated sub-nanochannels for effective ion transport is still a huge challenge. Herein, photo-controllable sub-nanochannels of metal-organic framework (MOF) NH2-MIL-53 encapsulated with spiropyrans (SP-MIL-53) were fabricated by a facile in situ growth strategy. Interestingly, the highly ordered sub-nanochannels of SP-MIL-53 were switched on and off to efficiently regulate the ion flux by the light-driven isomerization of SP, which made it a smart ionic gate with a high on-off ratio of 16.2 in 10 mM KCl aqueous solution via UV irradiation. Moreover, the ion-gated sub-nanochannel membrane yielded a high power density of 8.3 W m-2 under a 50-fold KCl concentration gradient in the open state. Density functional theory calculations revealed that K+ ions in SP-MIL-53 sub-nanochannels had a higher mobility constant (3.61 × 10-2) with UV irradiation than without UV illumination (2.33 × 10-22). This work provides an effective way to develop smart ion-gating sub-nanochannels for capturing salinity gradient power.

3.
Artigo em Inglês | MEDLINE | ID: mdl-35543622

RESUMO

The waste organic solvents containing inorganic salts have been considered sustainable resources, which can effectively capture salinity gradient energy using ion-selective membranes. However, it still remains a great challenge to fabricate the ion-selective membranes with high conversion efficiency and stability in an organic system. Here, the bioinspired nacre-like layered MXene/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) (MP) composite membranes for capturing salinity gradient energy from an organic solvent are fabricated via filtration method, in which PEDOT:PSS molecules are introduced into MXene interlayers. Accordingly, the MP membrane exhibits high mechanical property and wonderful stability in common organic solvents. As expected, the power generation of the MP membrane reaches up to 3216 ± 603 nW in a 2/0.001 M methanol (Met)-LiCl solution and a record high power generation of 6926 ± 959 nW after adding NaOH into the Met-LiCl solution, which is superior to the previous report. Both experimental and theoretical studies confirm that the MP membrane has excellent cation selectivity and fast ion transport performance. The results are attributable to an increased interlayer spacing between MXene layers and an improved cation selectivity due to the insertion of PEDOT:PSS chains and the enhanced dissociation of negative charges by NaOH. The ultrastable two-dimensional (2D) nanochannel membrane provides practical application for harvesting energy from waste organic solvents.

4.
J Colloid Interface Sci ; 609: 139-148, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34894548

RESUMO

Glucose oxidation reaction (GOR) plays a significant role in glucose fuel cells anode and glucose sensors. Therefore, optimizing the GOR catalyst nanostructure is auxiliary to their efficient operation. In this study, we present a cascade-assembled strategy to prepare CuO nanobundles (CuO-NB) with high-density and homogenous grainboundaries (GBs). The essence of activity in GOR that depended on GBs are thoroughly investigated. The increased glucose diffusion coefficient of CuO-NB means that GBs has a faster glucose mass transfer, which is attributed to the terraces in GBs dislocation surface. Furthermore, the accumulation of electrons on GBs makes the glucose adsorption increased and the free energy of dehydrogenation step decreased, leading to a lower glucose oxidation barrier. Therefore, CuO-NB is appropriate for non-invasive glucose detection and glucose fuel cells. This study sheds new light on the GBs effect in GOR and paves the way for developing high-efficiency electrocatalysts.


Assuntos
Cobre , Glucose , Catálise , Eletrodos
5.
ACS Appl Mater Interfaces ; 13(33): 39331-39340, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34376045

RESUMO

It is of great significance to construct heterojunctions using industrially produced co-catalysts. The direct Z-scheme composite photocatalyst provides an effective separation of photogenerated carriers. Herein, a kind of novel 2D/3D direct Z-scheme NiFe-LDH/Zn0.5Cd0.5S is prepared. Compared with fresh catalysts, the NiFe-layered double hydroxide (LDH)/Zn0.5Cd0.5S composite exhibits advantages including excellent visible light response ability and photoelectric performance and improved H2 evolution rate by 11.6 times. Combining with theoretical calculations, ESR, XPS, and experimental results, the direct Z-scheme mechanism of the photocatalytic reaction is proposed. There is a channel for electron transfer between Zn0.5Cd0.5S and NiFe-LDH, and the electrons of Zn0.5Cd0.5S directly combine with the valence band holes of NiFe-LDH. Finally, the electrons remaining on NiFe-LDH can reduce H+ to generate H2. This process effectively achieves separation of photogenerated carriers and increases photocatalytic H2 evolution.

6.
J Colloid Interface Sci ; 602: 799-809, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34171746

RESUMO

The electrochemical synthesis of hydrogen peroxide (H2O2) from two-electron oxygen reduction reaction (2e- ORR) is a promising alternative for producing chemicals on demand, but its widespread application is still hampered by the low efficiency. Here, we successfully prepared a boron and nitrogen co-doped porous carbon (B/NC) aerogel with a tunable B, N co-doped configuration by the gelation of PVA-graphene, borax and PANI, followed by pyrolysis. Due to a hierarchical porous structure and optimized B, N co-doping, B/NC aerogel showed an excellent electrocatalytic performance for H2O2 production in alkaline solution with a high H2O2 selectivity (94.16%) at positive applied potential (0.6 V vs. RHE), superior than most of the other reported electrocatalysts. Density functional theory (DFT) calculations reveal that the hexagonal boron nitride (hBN) coupled with neighboring pyridinic-N species act as the active sites to lower free energy barrier for formation of HOO* intermediate, thus facilitating H2O2 production. Practically, B 2p electron plays an important role for the adsorption of HOO* intermediates. B and Nco-doping into carbon materials provides an effective and facile method to reasonably construct carbon-based catalysts for electroreduction of O2 to H2O2.

7.
Nanotechnology ; 31(42): 425404, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32604073

RESUMO

Hollow structured nanomaterials with void space available inside the shells can effectively enhance electrocatalytic activity due to their high specific surface area, volume buffer and shell permeability properties. In this study, low-cost and hollow structured bimetal phosphide nanowires are synthesized directly on Ni foam via the Kirkendall effect by using NaH2PO2 as a phosphorizing agent at 350 °C. Both the crystal and hollow structures of the obtained phosphide can be efficiently tuned by controlling the amount of phosphorizing agent and the phosphorizing time. The morphology and microstructure of the obtained phosphides are characterised using various techniques, which indicate that the formation mechanism of the hollow structure is consistent with the Kirkendall effect. The optimized bimetal phosphide sample demonstrates a low onset potential (59 mV) at a current density of 10 mA cm-2, low charge transfer resistance (0.83 Ω) and superior durability in the hydrogen evolution reaction (HER) for water electrolysis. The electrochemical results clearly demonstrate that the hollow structure can efficiently improve the HER properties and the obtained phosphide is a promising HER catalysts for water splitting in KOH or seawater electrolytes.

8.
J Colloid Interface Sci ; 503: 76-85, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28500942

RESUMO

In this work, a metastable aqueous interface was fabricated for synthesizing mesoporous and high surface area MnO2. When urea was used as the additive, hierarchical spheres self-organized from ultrathin nano-sheets were obtained. Its porous structure could be controlled through adjusting the urea concentration, and a maximum surface area of 407m2 g-1 was achieved by this method, which is larger than the reported values. Due to the porous structure and high surface area, as-prepared MnO2 exhibited a specific capacitance of 775.4 F g-1 at a current density of 0.1 A g-1, and exhibited a 63.5% capacitance retention when the current density was increased from 0.1 A g-1 to 5A g-1. Durability studies showed a 63.7% capacitance retention after 2500 cycles. The metastable interfacial reaction approach could also be extended to other alloys with large surface area and porous structure, such as CoB alloy. This method provides a simple and low-cost method to synthesize high surface area and mesoporous materials.

9.
J Colloid Interface Sci ; 475: 149-153, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27163841

RESUMO

A novel room-temperature solid-state reaction is developed to synthesize cotton-like CoB alloy (CoBSSR) catalysts with a large specific surface area of 222.4m(2)g(-1). In the hydrolysis of ammonia borane catalyzed by the CoBSSR, the rate of hydrogen generation can reach 68.7mLmin(-1) with a turnover frequency (TOF) value of ca. 6.9Lhydrogenmin(-1)gcatalyst(-1) at 25°C. The TOF value is about 2 times as large as that of CoB alloy prepared by a regular solid-state reaction, which is also much higher than those of the CoB catalysts recently reported in the literature. The activation energy of the hydrolysis of ammonia borane catalyzed by the CoBSSR is as low as 22.78kJmol(-1), hinting that the CoBSSR possesses high catalytic activity, which may be attributed to the large specific surface area and the abundant porous structure. The high catalytic performance, good recoverability and low cost of the CoBSSR enable it to be a promissing catalyst condidate in the hydrolysis of ammonia borane for hydrogen production in commercial application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...