Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Biomed Eng ; 71(3): 831-840, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37756181

RESUMO

A fully-sampled two-dimensional (2D) matrix array ultrasonic transducer is essential for fast and accurate three-dimensional (3D) volumetric ultrasound imaging. However, these arrays, usually consisting of thousands of elements, not only face challenges of poor performance and complex wiring due to high-density elements and small element sizes but also put high requirements for electronic systems. Current commercially available fully-sampled matrix arrays, dividing the aperture into four fixed sub-apertures to reduce system channels through multiplexing are widely used. However, the fixed sub-aperture configuration limits imaging flexibility and the gaps between sub-apertures lead to reduced imaging quality. In this study, we propose a high-performance multiplexed matrix array by the design of 1-3 piezocomposite and gapless sub-aperture configuration, as well as optimized matching layer materials. Furthermore, we introduce a sub-aperture volumetric imaging method based on the designed matrix array, enabling high-quality and flexible 3D ultrasound imaging with a low-cost 256-channel system. The influence of imaging parameters, including the number of sub-apertures and steering angle on imaging quality was investigated by simulation, in vitro and in vivo imaging experiments. The fabricated matrix array has a center frequency of 3.4 MHz and a -6 dB bandwidth of above 70%. The proposed sub-aperture volumetric imaging method demonstrated a 10% improvement in spatial resolution, a 19% increase in signal-to-noise ratio, and a 57.7% increase in contrast-to-noise ratio compared with the fixed sub-aperture array imaging method. This study provides a new strategy for high-quality volumetric ultrasound imaging with a low-cost system.


Assuntos
Imageamento Tridimensional , Transdutores , Ultrassonografia/métodos , Razão Sinal-Ruído , Eletrônica , Imagens de Fantasmas
2.
IEEE Trans Biomed Eng ; 71(5): 1628-1639, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38133968

RESUMO

Coherent plane-wave compounding technique enables rapid ultrasound imaging with comparable image quality to traditional B-mode imaging that relies on focused beam transmission. However, existing methods assume homogeneity in the imaged medium, neglecting the heterogeneity in sound velocities and densities present in real tissues, resulting in noise reverberation. This study introduces the Reverse Time Migration (RTM) method for ultrasound plane-wave imaging to overcome this limitation, which is combined with a method for estimating the speed of sound in layered media. Simulation results in a homogeneous background demonstrate that RTM reduces side lobes and grating lobes by approximately 30 dB, enhancing the contrast-to-noise ratio by 20% compared to conventional delay and sum (DAS) beamforming. Moreover, RTM achieves superior imaging outcomes with fewer compounding angles. The lateral resolution of the RTM with 5-9 angle compounding is able to achieve the effectiveness of the DAS method with 15-19 angle compounding, and the CNR of the RTM with 11-angle compounding is almost the same as that of the DAS with 21-angle compounding. In a heterogeneous background, experimental simulations and in vitro wire phantom experiments confirm RTM's capability to correct depth imaging, focusing reflected waves on point targets. In vitro porcine tissue experiments enable accurate imaging of layer interfaces by estimating the velocities of multiple layers containing muscle and fat. The proposed imaging procedure optimizes velocity estimation in complex media, compensates for the impact of velocity differences, provides more reliable imaging results.


Assuntos
Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Ultrassonografia , Ultrassonografia/métodos , Animais , Suínos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Simulação por Computador , Processamento de Sinais Assistido por Computador
3.
Artigo em Inglês | MEDLINE | ID: mdl-33591916

RESUMO

Acoustic droplet ejection (ADE) uses the acoustic energy produced by a focused ultrasound beam to provide a noncontact, highly precise, automatic, and cost-effective liquid transfer method for life science applications. The reported minimum precision of the current acoustic liquid transfer technology is 1 nL. Since precision improvement always brings valuable results in biological research, it is highly necessary to develop pico-liter precision liquid transfer technology. In this work, we developed a 40-MHz ultrahigh -frequency focused ultrasound transducer with a large aperture of 7×7 mm2 and a wide bandwidth of 76.4%. The designed transducer can successfully eject pico-liter droplets, and the droplet ejection accuracy ranges from 28 to 439 pL. The effects of the acoustic parameters, including excitation amplitude, pulsewidth, and frequency, on the size of the ejected droplet were studied. A wide range of ejected droplet sizes could be obtained by adjusting the acoustic parameters, thereby making liquid transfer flexible. The flexible pico-liter liquid transfer based on the wide-bandwidth, high-frequency ultrasound transducer is easier to achieve automatically, and thus it has broad prospects in biological research and industrial applications.


Assuntos
Acústica , Transdutores
4.
IEEE Trans Biomed Eng ; 65(1): 15-20, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28368803

RESUMO

High-frequency ultrasound imaging (at >20 MHz) has gained widespread attention due to its high spatial resolution being useful for basic cardiovascular and cancer research involving small animals. The sampling rate of the analog-to-digital converter in a high-frequency ultrasound system usually needs to be higher than 120 MHz in order to satisfy the Nyquist sampling-rate requirement. However, the sampling rate is typically within the range of 40-60 MHz in a traditional ultrasound system, and so we propose a delayed-excitation method for performing high-frequency ultrasound imaging with a traditional data acquisition scheme. In this method, the transmitted pulse is delayed by a certain time period so that the ultrasound echo data are aligned into high-sampling-rate slots. Wire and tissue-mimicking phantoms were imaged to evaluate the performance of the proposed method, whereas a porcine small-intestine specimen and an excised rabbit eyeball were used for in vitro imaging evaluations. The test results demonstrate that the proposed method allows high-frequency ultrasound imaging to be implemented using a traditional ultrasound sampling system.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Processamento de Sinais Assistido por Computador , Ultrassonografia/métodos , Animais , Olho/diagnóstico por imagem , Intestino Delgado/diagnóstico por imagem , Imagens de Fantasmas , Coelhos , Suínos
5.
IEEE Trans Med Imaging ; 36(9): 1922-1929, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28475050

RESUMO

Wireless capsule endoscopy has opened a new era by enabling remote diagnostic assessment of the gastrointestinal tract in a painless procedure. Video capsule endoscopy is currently commercially available worldwide. However, it is limited to visualization of superficial tissue. Ultrasound (US) imaging is a complementary solution as it is capable of acquiring transmural information from the tissue wall. This paper presents a mechanical scanning device incorporating a high-frequency transducer specifically as a proof of concept for US capsule endoscopy (USCE), providing information that may usefully assist future research. A rotary solenoid-coil-based motor was employed to rotate the US transducer with sectional electronic control. A set of gears was used to convert the sectional rotation to circular rotation. A single-element focused US transducer with 39-MHz center frequency was used for high-resolution US imaging, connected to an imaging platform for pulse generation and image processing. Key parameters of US imaging for USCE applications were evaluated. Wire phantom imaging and tissue phantom imaging have been conducted to evaluate the performance of the proposed method. A porcine small intestine specimen was also used for imaging evaluation in vitro. Test results demonstrate that the proposed device and rotation mechanism are able to offer good image resolution ( [Formula: see text]) of the lumen wall, and they, therefore, offer a viable basis for the fabrication of a USCE device.


Assuntos
Endoscopia por Cápsula , Animais , Desenho de Equipamento , Imagens de Fantasmas , Suínos , Transdutores , Ultrassonografia
6.
IEEE Trans Biomed Eng ; 64(8): 1935-1942, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27893376

RESUMO

Advances in methodologies and tools often lead to new insights into cardiovascular diseases. Intravascular ultrasound (IVUS) is a well-established diagnostic method that provides high-resolution images of the vessel wall and atherosclerotic plaques. High-frequency (>50 MHz) ultrasound enables the spatial resolution of IVUS to approach that of optical imaging methods. However, the penetration depth decreases when using higher imaging frequencies due to the greater acoustic attenuation. An imaging method that improves the penetration depth of high-resolution IVUS would, therefore, be of major clinical importance. Modulated excitation imaging is known to allow ultrasound waves to penetrate further. This paper presents an ultrasound system specifically for modulated-excitation-based IVUS imaging. The system incorporates a high-voltage waveform generator and an image processing board that are optimized for IVUS applications. In addition, a miniaturized ultrasound transducer has been constructed using a Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal to improve the ultrasound characteristics. The results show that the proposed system was able to provide increases of 86.7% in penetration depth and 9.6 dB in the signal-to-noise ratio for 60 MHz IVUS. In vitro tissue samples were also investigated to demonstrate the performance of the system.


Assuntos
Aumento da Imagem/instrumentação , Interpretação de Imagem Assistida por Computador/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Transdutores , Ultrassonografia de Intervenção/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...