Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Chem Sci ; 15(16): 5897-5915, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38665515

RESUMO

Ammonia (NH3) is closely related to the fields of food and energy that humans depend on. The exploitation of advanced catalysts for NH3 synthesis has been a research hotspot for more than one hundred years. Previous studies have shown that the Ru B5 sites (step sites on the Ru (0001) surface uniquely arranged with five Ru atoms) and Fe C7 sites (iron atoms with seven nearest neighbors) over nanoparticle catalysts are highly reactive for N2-to-NH3 conversion. In recent years, single-atom and cluster catalysts, where the B5 sites and C7 sites are absent, have emerged as promising catalysts for efficient NH3 synthesis. In this review, we focus on the recent advances in single-atom and cluster catalysts, including single-atom catalysts (SACs), single-cluster catalysts (SCCs), and bimetallic-cluster catalysts (BCCs), for thermocatalytic NH3 synthesis at mild conditions. In addition, we discussed and summarized the unique structural properties and reaction performance as well as reaction mechanisms over single-atom and cluster catalysts in comparison with traditional nanoparticle catalysts. Finally, the challenges and prospects in the rational design of efficient single-atom and cluster catalysts for NH3 synthesis were provided.

2.
Heliyon ; 10(5): e27618, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38495177

RESUMO

Acyl-CoA thioesterase 4 (ACOT4) has been reported to be related to acetyl-CoA carboxylase activity regulation; However, its exact functions in liver lipid and glucose metabolism are still unclear. Here, we discovered explored the regulatory roles of ACOT4 in hepatic lipid and glucose metabolism in vitro. We found that the expression level of ACOT4 was significantly increased in the hepatic of db/db and ob/ob mice as well as obese mice fed a high fat diet. Adenovirus-mediated overexpression of ACOT4 promoted gluconeogenesis and high-glucose/high-insulin-induced lipid accumulation and impaired insulin sensitivity in primary mouse hepatocytes, whereas ACOT4 knockdown notably suppressed gluconeogenesis and decreased the triglycerides accumulation in hepatocytes. Furthermore, ACOT4 knockdown increased insulin-induced phosphorylation of AKT and GSK-3ß in primary mouse hepatocytes. Mechanistically, we found that upregulation of ACOT4 expression inhibited AMP-activated protein kinase (AMPK) activity, and its knockdown had the opposite effect. However, activator A769662 and inhibitor compound C of AMPK suppressed the impact of the change in ACOT4 expression on AMPK activity. Our data indicated that ACOT4 is related to hepatic glucose and lipid metabolism, primarily via the regulation of AMPK activity. In conclusion, ACOT4 is a potential target for the therapy of non-alcoholic fatty liver (NAFLD) and type 2 diabetes.

3.
Surg Infect (Larchmt) ; 25(2): 140-146, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38265838

RESUMO

Background: To investigate retrospectively whether metabolic syndrome (MetS) of flexible ureteroscopy (fURS) lithotripsy can be used to predict post-operative infection. Patients and Methods: After screening, 1,110 patients who received fURS lithotripsy for upper urinary tract stones in our center between January 2015 and December 2022 were analyzed retrospectively. Patients were divided into MetS-positive group and MetS-negative group. Post-operative infection was divided into fever, urosepsis, and septic shock. Relevant data during the peri-operative period were collected. Univariable and multivariable logistic regression analyses were adopted to estimate the impact of metabolic syndrome on post-operative infection in patients undergoing fURS lithotripsy. Results: Among the 1,110 patients, 427 tested positive for MetS, whereas 683 tested negative. Eighty-eight patients suffered from fever (67 patients in the MetS-positive group and 21 in the MetS-negative group). Forty-nine patients had urosepsis (29 patients in the MetS-positive group and 20 in the MetS-negative group), of whom seven patients developed septic shock. No patient developed multiple organ failure or died because of infection. The prevalence of post-operative infections in the MetS-positive group was higher than that in the MetS-negative group (p < 0.001). Multivariable logistic regression analyses showed that diabetes mellitus, MetS-positive, positive urine culture, and longer operation time were positively correlated with post-operative fever. Positive MetS, positive urine culture, and longer operation time were strongly correlated with post-operative urosepsis. Conclusions: Metabolic syndrome was found to be associated with post-operative infection in patients undergoing fURS lithotripsy, suggesting it can serve as a predictive factor.


Assuntos
Cálculos Renais , Litotripsia , Síndrome Metabólica , Sepse , Choque Séptico , Infecções Urinárias , Humanos , Ureteroscopia/efeitos adversos , Síndrome Metabólica/complicações , Síndrome Metabólica/epidemiologia , Estudos Retrospectivos , Cálculos Renais/complicações , Cálculos Renais/cirurgia , Litotripsia/efeitos adversos , Sepse/etiologia , Sepse/complicações , Infecções Urinárias/epidemiologia , Infecções Urinárias/complicações , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Febre , Resultado do Tratamento
4.
Artigo em Inglês | MEDLINE | ID: mdl-38015642

RESUMO

Promoters are indispensable components of Ru-based catalysts to promote N2 activation in ammonia (NH3) synthesis. The rational addition and regulation of promoters play a critical role in affecting the NH3 synthesis rate. In this work, we report a simple method by altering the loading sequence of Ba and Ru species to modulate the Ru-promoter interface, thus significantly boosting the NH3 synthesis rate. The Ba-Ru/GC BM catalyst via the prior loading of Ba rather than Ru over graphitic carbon (GC) exhibits a high NH3 synthesis rate of 18.7 mmol gcat-1 h-1 at 400 °C and 1 MPa, which is 2.5 times that of the Ru-Ba/GC BM catalyst via the conventional prior loading of Ru rather than Ba on GC. Our studies reveal that the prior loading of Ba benefits the high dispersion of the basic Ba promoter over an electron-withdrawing GC support, and then Ba species serve as structural promoters to stabilize Ru with small particle sizes, which exposes more active sites for N2 activation. Additionally, the intimate Ba and Ru interface enables facile electron donation from Ba to Ru sites, thus accelerating N2 dissociation to realize efficient NH3 synthesis. This work provides a simple approach to modulating the Ru-promoter interface and maximizing promoter utilization to enhance NH3 synthesis performance.

5.
Front Oncol ; 13: 1138992, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841443

RESUMO

Objective: Chemotherapy-induced mucositis (CIM) significantly impacts clinical outcomes and diminishes the quality of life in patients with gastrointestinal cancer. This study aims to prospectively determine the incidence, severity, and underlying risk factors associated with CIM in this patient population. Methods: To achieve this objective, we introduce a novel Machine Learning-based Toxicity Prediction Model (ML-TPM) designed to analyze the risk factors contributing to CIM development in gastrointestinal cancer patients. Within the winter season spanning from December 15th, 2018 to January 14th, 2019, we conducted in-person interviews with patients undergoing chemotherapy for gastrointestinal cancer. These interviews encompassed comprehensive questionnaires pertaining to patient demographics, CIM incidence, severity, and any supplementary prophylactic measures employed. Results: The study encompassed a cohort of 447 participating patients who provided complete questionnaire responses (100%). Of these, 328 patients (73.4%) reported experiencing CIM during the course of their treatment. Notably, CIM-induced complications led to treatment discontinuation in 14 patients (3%). The most frequently encountered CIM symptoms were diarrhea (41.6%), followed by nausea (37.8%), vomiting (25.1%), abdominal pain (21%), gastritis (10.5%), and oral pain (10.3%). Supplementary prophylaxis was administered to approximately 62% of the patients. The analysis revealed significant correlations between the overall incidence of CIM and gender (p=0.015), number of chemotherapy cycles exceeding one (p=0.039), utilization of platinum-based regimens (p=0.039), and administration of irinotecan (p=0.003). Specifically, the incidence of diarrhea exhibited positive correlations with prior surgical history (p=0.037), irinotecan treatment (p=0.021), and probiotics usage (p=0.035). Conversely, diarrhea incidence demonstrated an adverse correlation with platinum-based treatment (p=0.026). Conclusion: In conclusion, this study demonstrates the successful implementation of the ML-TPM model for automating toxicity prediction with accuracy comparable to conventional physical analyses. Our findings provide valuable insights into the identification of CIM risk factors among gastrointestinal cancer patients undergoing chemotherapy. Furthermore, the results underscore the potential of machine learning in enhancing our understanding of chemotherapy-induced mucositis and advancing personalized patient care strategies.

6.
BMC Biol ; 21(1): 192, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37697363

RESUMO

BACKGROUND: Lauraceae is well known for its significant phylogenetic position as well as important economic and ornamental value; however, most evergreen species in Lauraceae are restricted to tropical regions. In contrast, camphor tree (Cinnamomum camphora) is the most dominant evergreen broadleaved tree in subtropical urban landscapes. RESULTS: Here, we present a high-quality reference genome of C. camphora and conduct comparative genomics between C. camphora and C. kanehirae. Our findings demonstrated the significance of key genes in circadian rhythms and phenylpropanoid metabolism in enhancing cold response, and terpene synthases (TPSs) improved defence response with tandem duplication and gene cluster formation in C. camphora. Additionally, the first comprehensive catalogue of C. camphora based on whole-genome resequencing of 75 accessions was constructed, which confirmed the crucial roles of the above pathways and revealed candidate genes under selection in more popular C. camphora, and indicated that enhancing environmental adaptation is the primary force driving C. camphora breeding and dominance. CONCLUSIONS: These results decipher the dominance of C. camphora in subtropical urban landscapes and provide abundant genomic resources for enlarging the application scopes of evergreen broadleaved trees.


Assuntos
Cinnamomum camphora , Cinnamomum camphora/genética , Filogenia , Melhoramento Vegetal , Análise de Sequência de DNA , Genômica
7.
J Proteome Res ; 22(10): 3103-3122, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37725793

RESUMO

For years, the paths of sequencing technologies and mass spectrometry have occurred in isolation, with each developing its own unique culture and expertise. These two technologies are crucial for inspecting complementary aspects of the molecular phenotype across the central dogma. Integrative multiomics strives to bridge the analysis gap among different fields to complete more comprehensive mechanisms of life events and diseases. Proteogenomics is one integrated multiomics field. Here in this review, we mainly summarize and discuss three aspects: workflow of proteogenomics, proteogenomics applications in cancer research, and the SWOT (Strengths, Weaknesses, Opportunities, Threats) analysis of proteogenomics in cancer research. In conclusion, proteogenomics has a promising future as it clarifies the functional consequences of many unannotated genomic abnormalities or noncanonical variants and identifies driver genes and novel therapeutic targets across cancers, which would substantially accelerate the development of precision oncology.

8.
Int J Mol Sci ; 24(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37629108

RESUMO

The plant Artemisia annua L. is famous for producing "artemisinin", which is an essential component in the treatment of malaria. The glandular secretory trichomes (GSTs) on the leaves of A. annua secrete and store artemisinin. Previous research has demonstrated that raising GST density can effectively raise artemisinin content. However, the molecular mechanism of GST initiation is not fully understood yet. In this study, we identified an MYB transcription factor, the AaMYB108-like, which is co-induced by light and jasmonic acid, and positively regulates glandular secretory trichome initiation in A. annua. Overexpression of the AaMYB108-like gene in A. annua increased GST density and enhanced the artemisinin content, whereas anti-sense of the AaMYB108-like gene resulted in the reduction in GST density and artemisinin content. Further experiments demonstrated that the AaMYB108-like gene could form a complex with AaHD8 to promote the expression of downstream AaHD1, resulting in the initiation of GST. Taken together, the AaMYB108-like gene is a positive regulator induced by light and jasmonic acid for GST initiation in A. annua.


Assuntos
Artemisia annua , Artemisininas , Artemisia annua/genética , Tricomas/genética
9.
Adv Sci (Weinh) ; 10(28): e2301166, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37566761

RESUMO

Most nonalcoholic steatohepatitis (NASH) patients develop severe fibrosis through extracellular matrix (ECM) accumulation, which can lead to hepatocellular carcinoma (HCC). Fibroblast growth factor 9 (FGF9) is involved in serial types of cancer; however, the specific role of FGF9 in NASH-driven HCC is not fully understood. This study finds that FGF9 is increased in patients with NASH-associated HCC. Furthermore, NASH-driven HCC mice models by feeding wildtype mice with high-fat/high-cholesterol (HFHC) diet and low dose carbon tetrachloride (CCl4 ) treatment is established; and identified that hepatic FGF9 is increased; with severe fibrosis. Additionally, AAV-mediated knockdown of FGF9 reduced the hepatic tumor burden of NASH-driven HCC mice models. Hepatocyte-specific FGF9 transgenic mice (FGF9Alb ) fed with a HFHC diet without CCl4 treatment exhibited an increased hepatic ECM and tumor burden. However, XAV-939 treatment blocked ECM accumulation and NASH-driven HCC in FGF9Alb mice fed with HFHC diet. Molecular mechanism studies show that FGF9 stimulated the expression of ECM related genes in a ß-catenin dependent manner; and FGF9 exerts its effect on ß-catenin stability via the ERK1/2-GSK-3ß signaling pathway. In summary, the data provides evidence for the critical role of FGF9 in NASH-driven HCC pathogenesis; wherein it promotes the tumors formation through the ECM pathway.

10.
Front Plant Sci ; 14: 1123707, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025132

RESUMO

Background: The genus Rhododendron (Ericaceae), a species-rich and widely distributed genus of woody plants, is distinguished for the beautiful and diverse flowers. Rhododendron delavayi Franch. and Rhododendron irroratum Franch., are highly attractive species widely distributed in south-west China and abundant new varieties have been selected from their genetic resources. Methods: We constructed chromosome-scale genome assemblies for Rhododendron delavayi and Rhododendron irroratum. Phylogenetic and whole-genome duplication analyses were performed to elucidate the evolutionary history of Rhododendron. Further, different types of gene duplications were identified and their contributions to gene family expansion were investigated. Finally, comprehensive characterization and evolutionary analysis of R2R3-MYB and NBS-encoding genes were conducted to explore their evolutionary patterns. Results: The phylogenetic analysis classified Rhododendron species into two sister clades, 'rhododendrons' and 'azaleas'. Whole-genome duplication (WGD) analysis unveiled only one WGD event that occurred in Rhododendron after the ancestral γ triplication. Gene duplication and gene family expansion analyses suggested that the younger tandem and proximal duplications contributed greatly to the expansion of gene families involved in secondary metabolite biosynthesis and stress response. The candidate R2R3-MYB genes likely regulating anthocyanin biosynthesis and stress tolerance in Rhododendron will facilitate the breeding for ornamental use. NBS-encoding genes had undergone significant expansion and experienced species-specific gain and loss events in Rhododendron plants. Conclusions: The reference genomes presented here will provide important genetic resources for molecular breeding and genetic improvement of plants in this economically important Rhododendron genus.

11.
Plant Physiol ; 192(2): 1483-1497, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36810650

RESUMO

Glandular secretory trichomes (GSTs) can secrete and store a variety of specific metabolites. By increasing GST density, valuable metabolites can be enhanced in terms of productivity. However, the comprehensive and detailed regulatory network of GST initiation still needs further investigation. By screening a complementary DNA library derived from young leaves of Artemisia annua, we identified a MADS-box transcription factor, AaSEPALLATA1 (AaSEP1), that positively regulates GST initiation. Overexpression of AaSEP1 in A. annua substantially increased GST density and artemisinin content. The HOMEODOMAIN PROTEIN 1 (AaHD1)-AaMYB16 regulatory network regulates GST initiation via the jasmonate (JA) signaling pathway. In this study, AaSEP1 enhanced the function of AaHD1 activation on downstream GST initiation gene GLANDULAR TRICHOME-SPECIFIC WRKY 2 (AaGSW2) through interaction with AaMYB16. Moreover, AaSEP1 interacted with the JA ZIM-domain 8 (AaJAZ8) and served as an important factor in JA-mediated GST initiation. We also found that AaSEP1 interacted with CONSTITUTIVE PHOTOMORPHOGENIC 1 (AaCOP1), a major repressor of light signaling. In this study, we identified a MADS-box transcription factor that is induced by JA and light signaling and that promotes the initiation of GST in A. annua.


Assuntos
Artemisia annua , Tricomas , Tricomas/genética , Tricomas/metabolismo , Artemisia annua/genética , Artemisia annua/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ciclopentanos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
Acta Pharmacol Sin ; 44(7): 1416-1428, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36721007

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a major health concern worldwide, and the incidence of metabolic disorders associated with NAFLD is rapidly increasing because of the obesity epidemic. There are currently no approved drugs that prevent or treat NAFLD. Recent evidence shows that bavachin, a flavonoid isolated from the seeds and fruits of Psoralea corylifolia L., increases the transcriptional activity of PPARγ and insulin sensitivity during preadipocyte differentiation, but the effect of bavachin on glucose and lipid metabolism remains unclear. In the current study we investigated the effects of bavachin on obesity-associated NAFLD in vivo and in vitro. In mouse primary hepatocytes and Huh7 cells, treatment with bavachin (20 µM) significantly suppressed PA/OA or high glucose/high insulin-induced increases in the expression of fatty acid synthesis-related genes and the number and size of lipid droplets. Furthermore, bavachin treatment markedly elevated the phosphorylation levels of AKT and GSK-3ß, improving the insulin signaling activity in the cells. In HFD-induced obese mice, administration of bavachin (30 mg/kg, i.p. every other day for 8 weeks) efficiently attenuated the increases in body weight, liver weight, blood glucose, and liver and serum triglyceride contents. Moreover, bavachin administration significantly alleviated hepatic inflammation and ameliorated HFD-induced glucose intolerance and insulin resistance. We demonstrated that bavachin protected against HFD-induced obesity by inducing fat thermogenesis and browning subcutaneous white adipose tissue (subWAT). We revealed that bavachin repressed the expression of lipid synthesis genes in the liver of obese mice, while promoting the expression of thermogenesis, browning, and mitochondrial respiration-related genes in subWAT and brown adipose tissue (BAT) in the mice. In conclusion, bavachin attenuates hepatic steatosis and obesity by repressing de novo lipogenesis, inducing fat thermogenesis and browning subWAT, suggesting that bavachin is a potential drug for NAFLD therapy.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Camundongos Obesos , Glicogênio Sintase Quinase 3 beta/metabolismo , Fígado/metabolismo , Obesidade/complicações , Obesidade/tratamento farmacológico , Obesidade/genética , Flavonoides/farmacologia , Dieta , Glucose/metabolismo , Insulina/metabolismo , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL
13.
Plant Sci ; 329: 111602, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36690278

RESUMO

Exploring the genetic network of glandular trichomes and manipulating genes relevant to secondary metabolite biosynthesis are of great importance and value. Artemisinin, a key antimalarial drug ingredient, is synthesized and stored in glandular secretory trichomes (GSTs) in Artemisia annua. WIN/SHN proteins, a clade of AP2/ERF family, are known as regulators for cuticle biosynthesis. However, their function in glandular trichome development is less unknown. In this study, we identified a WIN/SHN gene from A. annua and named it as AaWIN1. AaWIN1 was predominantly expressed in buds, flowers and trichomes, and encoded a nuclear-localized protein. Overexpressing AaWIN1 in A. annua significantly increased the density of GST as well as the artemisinin content. Furthermore, AaGSW2 was reported to play an important role in promoting GST initiation, and the expression of AaGSW2 was induced in AaWIN1-overexpression lines. AaMIXTA1, a MYB protein positively regulating trichome initiation and cuticle biosynthesis, was confirmed to interact with AaWIN1. In addition, the ectopic expression of AaWIN1 resulted in slender and curled leaves, fewer trichomes, and rising expressions of cuticle biosynthesis genes in Arabidopsis thaliana. Taken together, based on phenotype observations, content measurements and gene expression detections, AaWIN1 was considered as a positive regulator for GST initiation in A. annua.


Assuntos
Arabidopsis , Artemisia annua , Artemisininas , Tricomas , Artemisia annua/genética , Redes Reguladoras de Genes , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Artemisininas/metabolismo
14.
Ying Yong Sheng Tai Xue Bao ; 33(11): 2889-2896, 2022 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-36384822

RESUMO

We examined the dynamics of community structure in forests formed after cutting all Phyllostachys edulis at altitude of 480, 580, 700 and 800 m of the Mount Tianmu National Nature Reserve in Zhejiang Province, from 2017 to 2020, using phytocommunity method. Results showed that the total number of plant individuals was 515 belonging to 50 species, 43 genera and 27 families in 2017. After three years, 30 new plant species emerged, belonging to 23 genera and 14 families, and the number of individuals increased by 116.9% in 2020. The new species were mainly P. edulis, Callicarpa bodinieri, Lindera glauca, Litsea cubeba and Broussonetia papyrifera, which primarily distributed at the altitude of 580 and 700 m. The tree species with the largest importance value in the communities at altitude of 580, 700 and 800 m remained stable, including Cunninghamia lanceolata, Ailanthus altis-sima and Liquidambar formosana, whereas that in community at altitude of 480 m changed from C. lanceolata to Camellia oleifera. Meanwhile, the diameter distributions of community significantly differed across different altitudes. The diameter distribution of the community at altitude of 480 m displayed a single peak left skewness from the reverse 'J' type, whilst that at altitude of 700 m developed from a reverse 'J' type to an exponential type. The diameter distribution in the community at altitude of 800 m followed a normal pattern and the peak value shifted from 24 to 30 cm. Both the Simpson dominance index and Shannon diversity index of the four communities increased across the three years, and all decreased significantly with the increase of altitude. Meanwhile, ß diversity increased with rising altitude and increasing distance among altitudes. The recruitment of new species in 2020 provided sufficient seedlings and saplings for natural regeneration, but it had not yet succeeded to the subtropical climax community.


Assuntos
Altitude , Poaceae , Humanos , Árvores , Florestas , China
15.
Front Plant Sci ; 13: 982317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119604

RESUMO

The plant Artemisia annua is well known for its production of artemisinin, a sesquiterpene lactone that is an effective antimalarial compound. Although remarkable progress has been made toward understanding artemisinin biosynthesis, the effect of MADS-box family transcription factors on artemisinin biosynthesis is still poorly understood. In this study, we identified a MADS transcription factor, AaSEP4, that was predominantly expressed in trichome. AaSEP4 acts as a nuclear-localized transcriptional activator activating the expression of AaGSW1 (GLANDULAR TRICHOME-SPECIFIC WRKY1). Dual-luciferase and Yeast one-hybrid assays revealed that AaSEP4 directly bound to the CArG motif in the promoter region of AaGSW1. Overexpression of AaSEP4 in A. annua significantly induced the expression of AaGSW1 and four artemisinin biosynthesis genes, including amorpha-4,11-diene synthase (ADS), cytochrome P450 monooxygenase (CYP71AV1), double-bond reductase 2 (DBR2) and aldehyde dehydrogenase 1 (ALDH1). Furthermore, the results of high-performance liquid chromatography (HPLC) showed that the artemisinin content was significantly increased in the AaSEP4-overexpressed plants. In addition, RT-qPCR results showed that AaSEP4 was induced by methyl jasmonic acid (MeJA) treatment. Taken together, these results explicitly demonstrate that AaSEP4 is a positive regulator of artemisinin biosynthesis, which can be used in the development of high-artemisinin yielding A. annua varieties.

16.
Dermatol Surg ; 48(8): 797-801, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35917259

RESUMO

BACKGROUND: Sebaceous adenocarcinoma (SAC) mostly occurs in the elderly, and SAC in young and middle-aged population is inadequately investigated. OBJECTIVE: To explore the clinical features and prognosis of young and middle-aged adults with SAC. MATERIALS AND METHODS: Patients with skin SAC between ages 18 and 59 years from the Surveillance, Epidemiology, and End Results database (1975-2016) were eligible for this study. RESULTS: Seven hundred thirty-nine cases were identified. The proportion of extraocular SAC in the nonelderly increased from 1975-2005 to 2006-2016 ( p = .001), male predominance was observed in overall patients whereas female predominance in Asian population, and young patients had more head and neck SAC than middle-aged patients ( p = .014). The prognosis of young patients was better than middle-aged patients ( p = .004). Other independent prognostic factors included sex, marital status, tumor size, surgery, chemotherapy, and multiple primary cancer history. CONCLUSION: An increasing proportion of extraocular SAC was observed in young and middle-aged patients, and the young developed more head and neck SAC than the middle-aged. Female predominance was found in Asian population, and female patients had better prognosis. Younger age and married status indicated better prognosis, and around 20% of young and middle-aged patients might have poorer survival because of Muir-Torre syndrome.


Assuntos
Adenocarcinoma Sebáceo , Síndrome de Muir-Torre , Neoplasias das Glândulas Sebáceas , Adenocarcinoma Sebáceo/patologia , Adolescente , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Neoplasias das Glândulas Sebáceas/epidemiologia , Neoplasias das Glândulas Sebáceas/patologia , Neoplasias das Glândulas Sebáceas/terapia , Pele/patologia , Adulto Jovem
17.
Plant J ; 112(1): 115-134, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35942603

RESUMO

Vegetative propagation (VP) is an important practice for production in many horticultural plants. Sugar supply constitutes the basis of VP in bulb flowers, but the underlying molecular basis remains elusive. By performing a combined sequencing technologies coupled with ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry approach for metabolic analyses, we compared two Lycoris species with contrasting regeneration rates: high-regeneration Lycoris sprengeri and low-regeneration Lycoris aurea. A comprehensive multi-omics analyses identified both expected processes involving carbohydrate metabolism and transcription factor networks, as well as the metabolic characteristics for each developmental stage. A higher abundance of the differentially expressed genes including those encoding ethylene responsive factors was detected at bulblet initiation stage compared to the late stage of bulblet development. High hexose-to-sucrose ratio correlated to bulblet formation across all the species examined, indicating its role in the VP process in Lycoris bulb. Importantly, a clear difference between cell wall invertase (CWIN)-catalyzed sucrose unloading in high-regeneration species and the sucrose synthase-catalyzed pathway in low-regeneration species was observed at the bulblet initiation stage, which was supported by findings from carboxyfluorescein tracing and quantitative real-time PCR analyses. Collectively, the findings indicate a sugar-mediated model of the regulation of VP in which high CWIN expression or activity may promote bulblet initiation via enhancing apoplasmic unloading of sucrose or sugar signals, whereas the subsequent high ratio of hexose-to-sucrose likely supports cell division characterized in the next phase of bulblet formation.


Assuntos
Lycoris , Transcriptoma , Metabolismo dos Carboidratos/genética , Etilenos , Lycoris/genética , Lycoris/metabolismo , Metaboloma , Sacarose/metabolismo , Fatores de Transcrição/metabolismo , beta-Frutofuranosidase/metabolismo
18.
Chem Commun (Camb) ; 58(56): 7785-7788, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35731248

RESUMO

It is urgent to develop new efficient ammonia synthesis catalysts using non-precious metals. Herein, the Mo2C species is introduced into a carbon-supported Mo catalyst by in situ carburization of a carbon-supported Mo catalyst in H2. In combination with the presence of the Mo2C phase as well as the enhancement of the graphitization degree of carbon and the amount of the low-valent Mo species, the migration and the exchange of the adsorbed species with the gaseous species are accelerated. As a result, the catalyst with carbonization treatment shows higher ammonia synthesis activity than the sample without carbonization, and the ill effect of the poisoning of reagent gases also is alleviated.

19.
Nanomaterials (Basel) ; 12(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35630860

RESUMO

Electrochemical surface-enhanced Raman scattering (EC-SERS) spectroscopy is an ultrasensitive spectro-electrochemistry technique that provides mechanistic and dynamic information on electrochemical interfaces at the molecular level. However, the plasmon-mediated photocatalysis hinders the intrinsic electrochemical behavior of molecules at electrochemical interfaces. This work aimed to develop a facile method for constructing a reliable EC-SERS substrate that can be used to study the molecular dynamics at electrochemical interfaces. Herein, a novel Ag-WO3-x electrochromic heterostructure was synthesized for EC-SERS. Especially, the use of electrochromic WO3-x film suppresses the influence of hot-electrons-induced catalysis while offering a reliable SERS effect. Based on this finding, the real electrochemical behavior of p-aminothiophenol (PATP) on Ag nanoparticles (NPs) surface was revealed for the first time. We are confident that metal-semiconductor electrochromic heterostructures could be developed into reliable substrates for EC-SERS analysis. Furthermore, the results obtained in this work provide new insights not only into the chemical mechanism of SERS, but also into the hot-electron transfer mechanism in metal-semiconductor heterostructures.

20.
Antioxidants (Basel) ; 11(5)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35624841

RESUMO

Cold acclimation (CA) is a strategy which plants have evolved to increase freezing tolerance. Global climate change could obstruct CA and raise the probability of winter injury, especially for evergreens. Hence, understanding the regulatory mechanism of CA is crucial to improve freezing tolerance in evergreen plants. A comparative study on a pair of closely related evergreen and deciduous iris species in response to cold through CA was conducive to uncovering and complementing the knowledge of CA. We investigated morphological, physiological and biochemical changes, as well as the expression of associated genes in the functional leaves of both iris species from natural CA to deacclimation. Briefly, fast and strong CA in the evergreen iris might cause early expressions of BAM1, NCED3, GPX6, etc., which leads to strong enzyme activity of starch degradation, abscisic acid biosynthesis and reactive oxygen species scavenging. Additionally, genes belonging to the antioxidant system were mainly induced during deacclimation. These results suggest that interspecies differences in the leaf freezing tolerance of irises are associated with the rate and degree of CA, which activates multiple signaling networks with complex interactions and induces the transcription of cold-responsive genes. Moreover, the ICE-CBF-COR signaling cascade may integrate and initiate diverse cold-responsive pathways during CA of the evergreen iris. The findings of this study provide valuable insight to further research on CA mechanisms and implicate genes which could support breeding strategies in herbaceous perennials under climate changes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...