Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Exp Ther Med ; 28(2): 306, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38873039

RESUMO

The best treatment of high complex anal fistula (HCAF) is to avoid anal incontinence while improving the cure rate. On this basis, several surgical procedures for preserving the anal sphincter have been proposed. The purpose of the present study was to evaluate the efficacy and safety of transanal opening of intersphincteric space for treating HCAF. PubMed, Cochrane Library, China National Knowledge Infrastructure and the Wanfang databases were searched to collate all the articles on transanal opening of intersphincteric space for treating HCAF. A total of two researchers independently completed the whole process, from screening and inclusion to data extraction and the data was included in the RevMan 5.3 software for analysis. The main outcomes included the patients' essential characteristics, primary healing rate, management after recurrence, final healing rate, anal incontinence score before and after surgery, postoperative complication rate and types of complications. A total of six articles were included in this meta-analysis. The results showed that the weighted final healing rate of patients following transanal opening of intersphincteric space was 89% [risk differences (RD)=0.89; 95% confidence interval (CI)=0.86-0.92; I2=0%; P<0.00001]. The results of the anal incontinence score showed that there was no significant difference between the results before and after transanal opening of intersphincteric space surgery mean differences [(MD)=-0.04, Cl=-0.10-0.02, I2=0%; P=0.21]. Only 11 patients were reported to have complications, including urinary retention and bleeding following transanal opening of intersphincteric space with a complication rate of 8% (11/138) and the weighted average complication rate was 6% (RD=0.06,95% CI=0.02-0.10; I2=9%; P=0.003). Transanal opening of intersphincteric space has a high cure rate, a favorable anal incontinence score, fewer types of postoperative complications and a low complication rate; it can be used as a minimally invasive and sphincter-preserving surgical method for treating HCAF and is worthy of further promotion and research in clinical practice.

2.
Food Chem ; 454: 139737, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38795622

RESUMO

Atrazine (ATR) is herbicide that causes serious harm to the environment and threatens human food safety. Se-enriched yeast is the best organic selenium source for protecting cells from damage caused by poisonous substances. To explore mechanism of ATR on meat quality degradation and potential protective effects of Se-enriched yeast on ATR-induced muscle injury, quails were treated with ATR and/or Se-enriched yeast for 28 days. The results found ATR disrupted muscle fiber structure and decreased pH, tenderness, water-holding capacity, essential amino acid content and polyunsaturated fatty acid content. ATR aggravated oxidative stress and inflammation by inhibiting Nrf2 pathway and activating NF-κB pathway, ultimately causing apoptosis. However, Se-enriched yeast alleviated ATR-induced alterations in muscle chemical and physical properties by inhibiting oxidative stress and inflammation. Taken together, these results revealed that ATR exposure caused meat quality degradation and Se-enriched yeast had the potential to counteract ATR-induced myotoxicity by inhibiting oxidative stress and inflammation.

3.
Sci Adv ; 10(21): eadn1039, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38781329

RESUMO

Unknown forever chemicals like per- and polyfluoroalkyl substances (PFASs) are difficult to identify. Current platforms designed for metabolites and natural products cannot capture the diverse structural characteristics of PFAS. Here, we report an automatic PFAS identification platform (APP-ID) that screens for PFAS in environmental samples using an enhanced molecular network and identifies unknown PFAS structures using machine learning. Our networking algorithm, which enhances characteristic fragment matches, has lower false-positive rate (0.7%) than current algorithms (2.4 to 46%). Our support vector machine model identified unknown PFAS in test set with 58.3% accuracy, surpassing current software. Further, APP-ID detected 733 PFASs in real fluorochemical wastewater, 39 of which are previously unreported in environmental media. Retrospective screening of 126 PFASs against public data repository from 20 countries show PFAS substitutes are prevalent worldwide.


Assuntos
Fluorocarbonos , Aprendizado de Máquina , Fluorocarbonos/química , Algoritmos , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Humanos , Águas Residuárias/química , Exposição Ambiental , Máquina de Vetores de Suporte
4.
Chem Biol Interact ; 396: 111044, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38729284

RESUMO

Mastitis is an inflammatory disease of the mammary gland with a high incidence in lactating animals, significantly impacting their health and breastfeeding. Moreover, mastitis adversely affects milk quality and yield, resulting in substantial economic losses for the dairy farming industry. Forsythiaside A (FTA), a phenylethanol glycoside analog extracted from Forsythia, exhibits notable anti-inflammatory and antioxidant properties. However, its protective effects and specific mechanisms against mastitis remain unclear. In this study, a lipopolysaccharide (LPS)-induced mouse mastitis model was used to investigate the protective effect of FTA on LPS-induced mastitis and its potential mechanism using histological assays, Western blot, qRT-PCR, FITC-albumin permeability test, 16s rRNA gene sequencing analysis and non-targeted metabolomics assays to investigate the protective effect of FTA on LPS-induced mastitis model and its potential mechanism. The results demonstrated that FTA significantly mitigated LPS-induced mouse mastitis by reducing inflammation and apoptosis levels, modulating the PI3K/AKT/mTOR signaling pathways, inducing autophagy, and enhancing antioxidant capacity and the expression of tight junction proteins. Furthermore, FTA increased the abundance of beneficial microbiota while decreasing the levels of harmful microbiota in mice, thus counteracting the gut microbiota disruption induced by LPS stimulation. Intestinal metabolomics analysis revealed that FTA primarily regulated LPS-induced metabolite alterations through key metabolic pathways, such as tryptophan metabolism. This study confirms the anti-inflammatory and antioxidant effects of FTA on mouse mastitis, which are associated with key metabolic pathways, including the restoration of gut microbiota balance and the regulation of tryptophan metabolism. These findings provide a novel foundation for the treatment and prevention of mammalian mastitis using FTA.


Assuntos
Autofagia , Microbioma Gastrointestinal , Glicosídeos , Lipopolissacarídeos , Mastite , Animais , Feminino , Autofagia/efeitos dos fármacos , Camundongos , Mastite/induzido quimicamente , Mastite/metabolismo , Mastite/tratamento farmacológico , Mastite/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Glicosídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Apoptose/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Camundongos Endogâmicos BALB C
5.
J Invest Dermatol ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38570028

RESUMO

Angiosarcoma is an aggressive soft-tissue sarcoma with a poor prognosis. Chemotherapy for this cancer typically employs paclitaxel, a taxane (genotoxic drug), although it has a limited effect owing to chemoresistance to prolonged treatment. In this study, we examine an alternative angiosarcoma treatment approach that combines chemotherapeutic and senolytic agents. We find that the chemotherapeutic drugs cisplatin and paclitaxel efficiently induce senescence in angiosarcoma cells. Subsequent treatment with the senolytic agent ABT-263 eliminates senescent cells by activating the apoptotic pathway. In addition, expression analysis indicates that senescence-associated secretory phenotype genes are activated in senescent angiosarcoma cells and that ABT-263 treatment downregulates IFN-I pathway genes in senescent cells. Moreover, we show that cisplatin treatment alone requires high doses to remove angiosarcoma cells. In contrast, lower doses of cisplatin are sufficient to induce senescence, followed by the elimination of senescent cells by the senolytic treatment. This study sheds light on a potential therapeutic strategy against angiosarcoma by combining a relatively low dose of cisplatin with the ABT-263 senolytic agent, which can help ease the deleterious side effects of chemotherapy.

6.
Cell Death Dis ; 15(4): 256, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600092

RESUMO

Stromal fibroblasts are a major stem cell niche component essential for organ formation and cancer development. Fibroblast heterogeneity, as revealed by recent advances in single-cell techniques, has raised important questions about the origin, differentiation, and function of fibroblast subtypes. In this study, we show in mammary stromal fibroblasts that loss of the receptor tyrosine kinase (RTK) negative feedback regulators encoded by Spry1, Spry2, and Spry4 causes upregulation of signaling in multiple RTK pathways and increased extracellular matrix remodeling, resulting in accelerated epithelial branching. Single-cell transcriptomic analysis demonstrated that increased production of FGF10 due to Sprouty (Spry) loss results from expansion of a functionally distinct subgroup of fibroblasts with the most potent branching-promoting ability. Compared to their three independent lineage precursors, fibroblasts in this subgroup are "activated," as they are located immediately adjacent to the epithelium that is actively undergoing branching and invasion. Spry genes are downregulated, and activated fibroblasts are expanded, in all three of the major human breast cancer subtypes. Together, our data highlight the regulation of a functional subtype of mammary fibroblasts by Spry genes and their essential role in epithelial morphogenesis and cancer development.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais , Diferenciação Celular/genética , Receptores Proteína Tirosina Quinases/metabolismo , Fibroblastos/metabolismo
7.
Heliyon ; 10(4): e26572, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38434053

RESUMO

Hypoxic exercise is an effective intervention for obesity, because it promotes weight loss by regulating fatty acid (FA) metabolism. The regulation of peroxisome proliferator-activated receptor ß (PPARß) by miR-122 may be involved in this process, but the detailed mechanisms are unknown. In order to address this issue, we probed how miR-122 affected the expression of factors associated with FA metabolism in skeletal muscle of obese rats undergoing hypoxic training. By injecting adeno-associated virus 9 containing miR-122 overexpression vector or miR-122 inhibitor into skeletal muscles of rats with a 4-week hypoxic exercise regimen, the miR-122 expression level can be regulated. Body composition and blood lipid levels were analyzed, and PPARß, carnitine palmitoyltransferase 1b (CPT1b), acetylCoA carboxylase 2 (ACC2), and FA synthase (FAS) mRNA and protein levels were evaluated using quantitative reverse transcription quantitative PCR(RT-qPCR) and Western blot analysis. We found that miR-122 overexpression increased low-density lipoprotein cholesterol (LDL-C) and triglyceride (TG) levels and decreased PPARß, ACC2, and FAS expression. Conversely, miR-122 inhibition decreased TG level, increased high-density lipoprotein cholesterol (HDL-C) level, and upregulated PPARß, ACC2, FAS, and CPT1b. These data indicated that the negative regulation of PPARß by miR-122 promotes FA metabolism by altering the levels of the factors related to FA metabolism in skeletal muscle of obese rat under hypoxic training, thus providing molecular-level insight into the beneficial effects of this intervention.

8.
Water Res ; 253: 121299, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387265

RESUMO

As the key stage for purifying wastewater, elimination of emerging contaminants (ECs) is found to be fairly low in wastewater treatment plants (WWTPs). However, less knowledge is obtained regarding the transformation pathways between various chemical structures of ECs under different treatment processes. This study unveiled the transformation pathways of ECs with different structures in 15 WWTPs distributed across China by simplified network analysis (SNA) we proposed. After treatment, the molecular weight of the whole component of wastewater decreased and the hydrophilicity increased. There are significant differences in the structure of eliminated, consistent and formed pollutants. Amino acids, peptides, and analogues (AAPAs) were detected most frequently and most removable. Benzenoids were refractory. Triazoles were often produced. The high-frequency reactions in different WWTPs were similar, (de)methylation and dehydration occurred most frequently. Different biological treatment processes performed similarly, while some advanced treatment processes differed, such as a significant increase of -13.976 (2HO reaction) paired mass distances (PMDs) in the chlorine alone process. Further, the common structural transformation was uncovered. 4 anti-hypertensive drugs, including irbesartan, valsartan, olmesartan, and losartan, were identified, along with 22 transformation products (TPs) of them. OH2 and H2O PMDs occurred most frequently and in 80.81 % of the parent-transformation product pairs, the intensity of the product was higher than parent in effluents, whose risk should be considered in future assessment activity. Together our results provide a macrography perspective on the transformation processes of ECs in WWTPs. In the future, selectively adopting wastewater treatment technology according to structures is conductive for eliminating recalcitrant ECs in WWTPs.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Poluentes Químicos da Água/química , Irbesartana/análise , Losartan/análise
9.
J Agric Food Chem ; 72(7): 3314-3324, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38331717

RESUMO

Fusarium species produce a secondary metabolite known as T-2 toxin, which is the primary and most harmful toxin found in type A trichothecenes. T-2 toxin is widely found in food and grain-based animal feed and endangers the health of both humans and animals. T-2 toxin exposure in humans and animals occurs primarily through food administration; therefore, the first organ that T-2 toxin targets is the gut. In this overview, the research progress, toxicity mechanism, and detoxification of the toxin T-2 were reviewed, and future research directions were proposed. T-2 toxin damages the intestinal mucosa and destroys intestinal structure and intestinal barrier function; furthermore, T-2 toxin disrupts the intestinal microbiota, causes intestinal flora disorders, affects normal intestinal metabolic function, and kills intestinal epidermal cells by inducing oxidative stress, inflammatory responses, and apoptosis. The primary harmful mechanism of T-2 toxin in the intestine is oxidative stress. Currently, selenium and plant extracts are mainly used to exert antioxidant effects to alleviate the enterotoxicity of T-2 toxin. In future studies, the use of genomic techniques to find upstream signaling molecules associated with T-2 enterotoxin toxicity will provide new ideas for the prevention of this toxicity. The purpose of this paper is to review the progress of research on the intestinal toxicity of T-2 toxin and propose new research directions for the prevention and treatment of T-2 toxin toxicity.


Assuntos
Enteropatias , Toxina T-2 , Tricotecenos , Humanos , Animais , Toxina T-2/toxicidade , Toxina T-2/metabolismo , Tricotecenos/toxicidade , Tricotecenos/metabolismo , Estresse Oxidativo , Antioxidantes/metabolismo
10.
Environ Sci Technol ; 58(9): 4104-4114, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38373080

RESUMO

Per- and polyfluoroalkyl substances (PFASs) are widely used in industrial production, causing potential health risks to the residents living around chemical industrial plants; however, the lack of data on population exposure and adverse effects impedes our understanding and ability to prevent risks. In this study, we performed screening and association analysis on exogenous PFAS pollutants and endogenous small-molecule metabolites in the serum of elderly residents living near industrial plants. Exposure levels of 11 legacy and novel PFASs were determined. PFOA and PFOS were major contributors, and PFNA, PFHxS, and 6:2 Cl-PFESA also showed high detection frequencies. Association analysis among PFASs and 287 metabolites identified via non-target screening was performed with adjustments of covariates and false discovery rate. Strongly associated metabolites were predominantly lipid and lipid-like molecules. Steroid hormone biosynthesis, primary bile acid biosynthesis, and fatty-acid-related pathways, including biosynthesis of unsaturated fatty acids, linoleic acid metabolism, α-linolenic acid metabolism, and fatty acid biosynthesis, were enriched as the metabolic pathways associated with mixed exposure to multiple PFASs, providing metabolic explanation and evidence for the potential mediating role of adverse health effects as a result of PFAS exposure. Our study achieved a comprehensive screening of PFAS exposure and associated metabolic profiling, demonstrating the promising application for integrated analysis of exposome and metabolome.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Humanos , Idoso , Fluorocarbonos/análise , Poluentes Ambientais/análise , Metabolômica , Ácidos Graxos
11.
J Biochem ; 175(5): 525-537, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38366629

RESUMO

Cellular senescence occurs in response to endogenous or exogenous stresses and is characterized by stable cell cycle arrest, alterations in nuclear morphology and secretion of proinflammatory factors, referred to as the senescence-associated secretory phenotype (SASP). An increase of senescent cells is associated with the development of several types of cancer and aging-related diseases. Therefore, senolytic agents that selectively remove senescent cells may offer opportunities for developing new therapeutic strategies against such cancers and aging-related diseases. This review outlines senescence inducers and the general characteristics of senescent cells. We also discuss the involvement of senescent cells in certain cancers and diseases. Finally, we describe a series of senolytic agents and their utilization in therapeutic strategies.


Assuntos
Senescência Celular , Neoplasias , Animais , Humanos , Envelhecimento/metabolismo , Senescência Celular/efeitos dos fármacos , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Fenótipo Secretor Associado à Senescência , Senoterapia/uso terapêutico
12.
Phytomedicine ; 125: 155358, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38241916

RESUMO

BACKGROUND: Bovine mastitis is the most common animal production disease in the global dairy industry, which affects the health of dairy cows. When bovine mastitis occurs, the mitochondrial metabolism of breast tissue increases, and the relationship between inflammation and mitophagy has become a hot topic for many scholars. The abuse of antibiotics leads to the increase of resistance to bovine mastitis. FTA is one of the main effective components of Forsythia suspensa, which has anti-inflammatory, anti-infection, anti-oxidation and anti-virus pharmacological effects, and has broad application prospects in the prevention and treatment of bovine mastitis. However, the relationship between the anti-inflammatory effects of FTA and mitophagy is still unclear. PURPOSE: This study mainly explores the anti-inflammatory effect of FTA in bovine mastitis and the relationship between mitophagy. METHODS: MAC-T cells and wild-type mice were used to simulate the in vitro and in vivo response of mastitis. After the pretreatment with FTA, CsA inhibitors and siPINK1 were used to interfere with mitophagy, and the mitochondrial function impairment and the expression of inflammatory factors were detected. RESULTS: It was found that pre-treatment with FTA significantly reduced LPS induced inflammatory response and mitochondrial damage, while promoting the expression of mitophagy related factors. However, after inhibiting mitophagy, the anti-inflammatory effect of FTA was inhibited. CONCLUSION: This study is the first to suggest the relationship between the anti-inflammatory effect of FTA and mitophagy. PINK1/Parkin-mediated mitophagy is one of the ways that FTA protects MAC-T cells from LPS-induced inflammatory damage.


Assuntos
Glicosídeos , Mastite Bovina , Mitofagia , Bovinos , Feminino , Camundongos , Animais , Humanos , Proteínas Quinases/metabolismo , Lipopolissacarídeos/farmacologia , Mastite Bovina/tratamento farmacológico , Ubiquitina-Proteína Ligases/metabolismo , Anti-Inflamatórios/farmacologia
13.
Antioxidants (Basel) ; 13(1)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38247545

RESUMO

Deoxynivalenol (DON) is the one of the most common mycotoxins, widely detected in various original foods and processed foods. Tanshinone IIA (Tan IIA) is a fat-soluble diterpene quinone extracted from Salvia miltiorrhiza Bunge, which has multi-biological functions and pharmacological effects. However, whether Tan IIA has a protective effect against DON-induced intestinal toxicity is unknown. In this study, the results showed Tan IIA treatment could attenuate DON-induced IPEC-J2 cell death. DON increased oxidation product accumulation, decreased antioxidant ability and disrupted barrier function, while Tan IIA reversed DON-induced barrier function impairment and oxidative stress. Furthermore, Tan IIA dramatically improved mitochondrial function via mitochondrial quality control. Tan IIA could upregulate mitochondrial biogenesis and mitochondrial fusion as well as downregulate mitochondrial fission and mitochondrial unfolded protein response. In addition, Tan IIA significantly attenuated mitophagy caused by DON. Collectively, Tan IIA presented a potential protective effect against DON toxicity and the underlying mechanisms were involved in mitochondrial quality control-mediated mitophagy.

14.
Mycotoxin Res ; 40(1): 85-95, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38217761

RESUMO

T-2 toxin is a representative trichothecene that is widely detected in corn, wheat and other grain feeds. T-2 toxin has stable physical and chemical properties, making it difficult to remove from food and feed. Hence, T-2 toxin has become an unavoidable pollutant in food for humans and animals. T-2 toxin can enter brain tissue by crossing the blood-brain barrier and leads to congestion, swelling and even apoptosis of neurons. T-2 toxin poisoning can directly lead to clinical symptoms (anti-feeding reaction and decline of learning and memory function in humans and animals). Maternal T-2 toxin exposure also exerted toxic effects on the central nervous system of offspring. Oxidative stress is the core neurotoxicity mechanism underlying T-2 toxin poison. Oxidative stress-mediated apoptosis, mitochondrial oxidative damage and inflammation are all involved in the neurotoxicity induced by T-2 toxin. Thus, alleviating oxidative stress has become a potential target for relieving the neurotoxicity induced by T-2 toxin. Future efforts should be devoted to revealing the neurotoxic molecular mechanism of T-2 toxin and exploring effective therapeutic drugs to alleviate T-2 toxin-induced neurotoxicity.


Assuntos
Síndromes Neurotóxicas , Toxina T-2 , Humanos , Animais , Toxina T-2/toxicidade , Toxina T-2/metabolismo , Estresse Oxidativo , Barreira Hematoencefálica , Apoptose , Antioxidantes/metabolismo , Síndromes Neurotóxicas/etiologia
15.
Ecotoxicol Environ Saf ; 269: 115743, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38035519

RESUMO

Deoxynivalenol (DON) is the most common mycotoxin in food and feed, which can cause undesirable effects, including diarrhea, emesis, weight loss, and growth delay in livestock. Intestinal epithelial cells were the main target of DON, which can cause oxidative stress and inflammatory injury. Tanshinone IIA (Tan IIA) is fat-soluble diterpene quinone, which is the most abundant active ingredient in salvia miltiorrhiza plant with antioxidant and anti-inflammatory characteristics. However, it is not clear whether Tan IIA can protect against or inhibit intestinal oxidative stress and inflammatory injury under DON exposure. This study aimed to explore the protective effect of Tan IIA on DON-induced toxicity in porcine jejunum epithelial cells (IPEC-J2). Cells were exposed to 0, 0.5, 1.0, 2.0 µM DON and/or 45 µg/mL TAN ⅡA to detect oxidative stress indicators. inflammatory cytokines, NF-κB expression, NLRP3 inflammasome and pyroptosis-related factors. In this study, DON exposure caused IPEC-J2 cells oxidative stress by elevating ROS and 8-OHdG content, inhibited GSH-Px activity. Furthermore, DON increased pro-inflammatory factor (TNF-α, IL-1ß, IL-18 and IL-6) expression and decreased the anti-inflammatory factor (IL-10) expression, causing inflammatory response via triggering NF-κB pathway. Interestingly, above changes were alleviated after Tan IIA treatment. In addition, Tan IIA relieved DON-induced pyroptosis by suppressing the expression of pyroptosis-related factors (NLRP3, Caspase-1, GSDMD, IL-1ß, and IL-18). In general, our data suggested that Tan IIA can ameliorate DON-induced intestinal epithelial cells injury associated with suppressing the pyroptosis signaling pathway. Our findings pointed that Tan IIA could be used as the potential therapeutic drugs on DON-induced enterotoxicity.


Assuntos
Abietanos , Interleucina-18 , NF-kappa B , Tricotecenos , Suínos , Animais , NF-kappa B/metabolismo , Interleucina-18/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Linhagem Celular , Anti-Inflamatórios/farmacologia , Células Epiteliais
16.
J Hazard Mater ; 465: 133326, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38150765

RESUMO

In this paper, a novel All-In-One Urea@MIL-100(Fe)/CI-MCC/SA hydrogel platform was generated by microcrystalline cellulose (MCC) functionalized with pH-response probe (CI), MIL-100 (Fe) and sodium alginate (SA), which was as a carrier of urea to adsorb, remove and monitor NO2-. Under acidic condition, the fluorescent hydrogel platform could produce N2, CO2 and H2O through the diazotization and redox reaction between urea and NO2- with a removal efficiency up to 99.8%, and could also character a good adsorption property for NO2- due to the positive charges of protonation (the maximum adsorption capacity was 21.67 mg g-1), and the adsorption kinetics conformed to pseudo-second-order model. By carried out the NO2- removal step in fluorescent hydrogel platform, NO2- could also be detected indirectly by sensing the changes of pH within 15 min. The linear response range was 0-0.005 M, and the detection limit (LOD) was 74 µM. These results demonstrated that this All-In-One Urea@MIL-100(Fe)/CI-MCC/SA hydrogel platform had great potential in environment. This strategy for the removal and monitoring of NO2- could be employed to related applications in water purification and environmental protection. ENVIRONMENTAL IMPLICATION: Nitrite is one of the important indicators of water monitoring, which is harmful to human and environment. The removal and monitoring of nitrite in industrial wastewater and surface water is very important, but there are no studies about it at present. Based on the fact that urea can react with nitrite to produce green products, we synthesized a novel functional hydrogel to achieve adsorption, removal and fluorescence monitoring of nitrite for the first time. Besides, the practicability of the material in environmental water samples was verified through the detection of nitrite in simulated wastewater.

17.
Anim Biotechnol ; 35(1): 2290527, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38141161

RESUMO

Mastitis in cows is caused by the inflammation of the mammary glands due to an infection by external pathogenic bacteria. Mammary gland epithelial cells, which are in direct contact with the external environment, are responsible for the first line of defense of the mammary gland against pathogenic bacteria, playing an essential role in immune defense. To investigate the mechanism of bovine mammary epithelial cells in the inflammatory process, we treated the cells with LPS for 12 hours and analyzed the changes in mRNA by transcriptome sequencing. The results showed that compared to the control group, the LPS treatment group had 121 up-regulated genes and 18 down-regulated genes. GO and KEGG enrichment analysis revealed that these differential genes were mainly enriched in the IL-17 signaling pathway, Legionellosis, Cytokine-cytokine receptor interaction, NF-kappa B signaling pathway, and other signaling pathways. Furthermore, the expression of GRO1 and CXCL3 mRNAs increased significantly after LPS treatment. These findings provide new insights for the treatment of mastitis in cows in the future.


Assuntos
Doenças dos Bovinos , Mastite Bovina , Feminino , Bovinos , Animais , Lipopolissacarídeos/farmacologia , Transcriptoma , Glândulas Mamárias Animais/metabolismo , Células Epiteliais/metabolismo , Mastite Bovina/genética
18.
Antioxidants (Basel) ; 12(11)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-38001811

RESUMO

The intestinal tract is a target organ for Deoxynivalenol (DON) absorption and toxicity. Mitochondrial homeostasis imbalance is the gut toxicity mechanism of DON. Lycopene (LYC) has intestinal protective effects and can maintain mitochondrial homeostasis in response to various danger signals. The purpose of this study was to explore the protective effect of LYC on DON-induced IPEC-J2 cells damage. These results showed that DON exposure induced an increase in the levels of malondialdehyde and reactive oxygen species (ROS) in IPEC-J2 cells. DON impaired IPEC-J2 cell barrier function and caused mitochondrial dysfunction by inducing mitochondrial permeability transition pore (MPTP) opening, mitochondrial membrane potential (MMP) reducing, destroying mitochondrial fission factors, mitochondrial fusion factors, and mitophagy factors expression. However, adding LYC can reduce the toxic effects of DON-induced IPEC-J2 cells and decrease cellular oxidative stress, functional damage, mitochondrial dynamics imbalance, and mitophagy processes. In conclusion, LYC maintains mitochondrial homeostasis to counteract the IPEC-J2 cells' toxicity of DON.

19.
Microb Pathog ; 185: 106393, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37852550

RESUMO

Cow mastitis, caused by Streptococcus infection of the mammary glands, is a common clinical disease that can lead to decreased milk quality and threaten animal welfare and performance. Esculetin (ESC) is a coumarin with anti-inflammatory and anti-asthmatic effects. However, whether ESC has therapeutic effects on mastitis remains unexplored. This study was conducted to investigate the protective effect of ESC against murine mastitis caused by Streptococcus isolated from bovine mammary glands and elucidate the underlying mechanisms. Streptococcus uberis was used to construct a mouse model of mastitis. The results showed that the mice exhibited edema and thickening of the acinar wall with inflammatory infiltration after S. uberis treatment. Intraperitoneal injection of ESC significantly reduced inflammatory cell infiltration, restored normal physiological function, and inhibited the production of the inflammatory cytokines interleukin-1ß, interleukin-6, and tumor necrosis factor-α. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot analysis revealed that ESC reduced P38 phosphorylation, further inhibited the influence of mammary Streptococcus on cytoplasmic translocation of nuclear factor-κB (P65), and inhibited the transcriptional activation of P65, thus inhibiting the generation of inflammatory cells. Collectively, ESC may inhibit mitogen-activated protein kinase and nuclear factor-κB, thereby highlighting its potential for the treatment and prevention of mastitis.


Assuntos
Mastite Bovina , NF-kappa B , Humanos , Feminino , Bovinos , Animais , Camundongos , NF-kappa B/metabolismo , Sistema de Sinalização das MAP Quinases , Streptococcus/metabolismo , Glândulas Mamárias Animais , Lipopolissacarídeos/farmacologia , Mastite Bovina/patologia
20.
Anal Chem ; 95(39): 14551-14557, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37723602

RESUMO

In order to identify emerging per- and polyfluoroalkyl substances (PFASs) and their alternatives in the environment or population, we need to perform extensive profiling of PFASs to determine their distribution in samples. The sequential window acquisition of all theoretical fragment-ion spectra (SWATH mode) is capable of obtaining a wide range of MS2 spectra but is difficult for direct identification of PFASs due to its complex MS2 spectra, and the nontarget screening method is difficult to identify due to its lack of a priori information. In this study, we demonstrated the great potential of SWATH-F, a nontarget fragment-based homologue screening method in combination with the SWATH-MS deconvolution, for detecting PFASs. We evaluated the application of SWATH-F to gradient spiked samples and real population serum samples, compared it with nontarget homologue screening in the information-dependent acquisition mode (IDA mode), and obtained better results for SWATH-F with 276% improvement (IDA:17 PFASs, SWATH-F: 64 PFASs) in identification. In addition, we automated the screening and identification process of SWATH-F to facilitate its use by researchers. SWATH-F is freely available on GitHub (https://github.com/njuIrene/SWATH-F) under an MIT license.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...