Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 826
Filtrar
1.
Water Res ; 267: 122480, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39316959

RESUMO

Typhoons associated with heavy rainfall events, potentially triggering harmful algal blooms (cyanoHABs) dominated by cyanobacteria in coastal reservoirs. These blooms deteriorate water quality and produce toxins, posing a threat to aquatic ecosystems. However, the ecological mechanisms driving cyanobacteria communities in response to typhoons remain unclear. To address this gap, we investigated a coastal reservoir with high-frequency sampling during two typhoon seasons. We employed comprehensive statistical methods under neutral and evolutionary theories to analyze environmental dynamics and cyanobacterial genus succession. Our findings revealed a significant increase in nutrient loads following typhoons, with concentrations of total nitrogen (TN), total phosphorus (TP), and ammonia-nitrogen (NH4+-N) rising from 0.4 mg/L to 1.0 mg/L, 0.02 mg/L to 0.63 mg/L, and 0.03 mg/L to 0.26 mg/L, respectively. These changes coincided with fluctuations in other physicochemical parameters under changing hydrometeorological conditions. Despite significant environmental disturbances, the cyanobacterial community exhibited a remarkable recovery within 15-25 days following the typhoons. This recovery progressed through four distinct successional phases, with a notable shift in community composition from Raphidiopsis and Pseudoanabaena to Aphanocapsa, subsequently replaced by Raphidiopsis and Microcystis, before reverting to the pre-typhoon community structure. During the entire successional phase, the availability of TN and the TN/TP ratio played a dominant role, as indicated by PLS-PM analysis (total effects = -0.6; p < 0.05). Pre-typhoon, environmental factors primarily influenced community structure (54 %) based on modified stochasticity ratio. However, following the typhoons, stochastic fluctuations took precedence (71 %-91 %). The rapid recovery of cyanobacterial communities and the shift in driving mechanisms from deterministic to stochastic processes underscore the complex ecological responses to typhoon events. This study provides essential insights for biodiversity preservation and ecosystem restoration, emphasizing the need to consider both stochastic and deterministic processes in ecological management strategies.

2.
Phytomedicine ; 135: 156063, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39305744

RESUMO

BACKGROUND: Damage to the blood-brain barrier (BBB) is vital for the development of Alzheimer's disease (AD). Ginsenoside Rg2 (G-Rg2) has been shown to improve a variety of brain injuries, but whether G-Rg2 can improve the BBB leakage related to AD is still unclear. PURPOSE: Illuminate the effect and mechanism of G-Rg2 on AD-related BBB damage. To clarify the role of G-Rg2 in Toll-like receptor pathway and oxidative stress pathway and its effect on tight junction proteins (TJs) expression in vivo and in vitro experiments. METHODS AND RESULTS: In our research, the tightness of the BBB was improved and the inflammatory pathway was suppressed after 4 weeks of treatment with G-Rg2 (10 mg kg-1 and 20 mg kg-1) in aluminum trichloride (AlCl3) plus d-galactose (D-gal) caused AD mice (p < 0.05; p < 0.01). Concurrently, the stability of TJs in mouse brain endothelial cells (bEnd3) was improved after okadaic acid (OA) -induced AD model cells were pretreated with G-Rg2 (5 µM, 10 µM, and 20 µM) for 24 h (p < 0.05; p < 0.01). The oxidative stress pathway and Toll-like receptor pathway in mouse astrocyte-cerebellum (MA-c) were inhibited (p < 0.05; p < 0.01). Meanwhile, in vitro interaction model results showed that G-Rg2 reduced the activation of MA-c, thereby alleviating the degradation of TJs in bEnd3 (p < 0.05; p < 0.01). The co-culture system of MA-c and bEnd3 further clearly demonstrated that G-Rg2 (20 µM) could improve their interaction and enhance BBB tightness. CONCLUSION: This study suggests that G-Rg2 can inhibit the TLR4/MyD88/MMP9 inflammatory pathway by reducing the activation of MA-c and the binding of TLR4 to MyD88, thereby decreasing the secretion of inflammatory factors and matrix metalloproteinases (MMPs), hence maintaining the stability of TJs in bEnd3, which may be one of the mechanisms of G-Rg2 in reducing AD-related BBB damage.

3.
Adv Healthc Mater ; : e2403046, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39263842

RESUMO

In the current battle against antibiotic resistance, the resilience of Gram-negative bacteria against traditional antibiotics is due not only to their protective outer membranes but also to mechanisms like efflux pumps and enzymatic degradation of drugs, underscores the urgent need for innovative antimicrobial tactics. Herein, this study presents an innovative method involving the synthesis of three furoxan derivatives engineered to self-assemble into nitric oxide (NO) donor nanoparticles (FuNPs). These FuNPs, notably supplied together with polymyxin B (PMB), achieve markedly enhanced bactericidal efficacy against a wide spectrum of bacterial phenotypes at considerably lower NO concentrations (0.1-2.8 µg mL-1), which is at least ten times lower than the reported data for NO donors (≥200 µg mL-1). The bactericidal mechanism is elucidated using confocal, scanning, and transmission electron microscopy techniques. Neutron reflectometry confirms that FuNPs initiate membrane disruption by specifically engaging with the polysaccharides on bacterial surfaces, causing structural perturbations. Subsequently, PMB binds to lipid A on the outer membrane, enhancing permeability and resulting in a synergistic bactericidal action with FuNPs. This pioneering strategy underscores the utility of self-assembly in NO delivery as a groundbreaking paradigm to circumvent traditional antibiotic resistance barriers, marking a significant leap forward in the development of next-generation antimicrobial agents.

4.
Plant Divers ; 46(4): 425-434, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39280975

RESUMO

Orchidaceae are one of the largest families of angiosperms in terms of species richness. In the last decade, numerous studies have delved into reconstructing the phylogenetic framework of Orchidaceae, leveraging data from plastid, mitochondrial and nuclear sources. These studies have provided new insights into the systematics, diversification and biogeography of Orchidaceae, establishing a robust foundation for future research. Nevertheless, pronounced controversies persist regarding the precise placement of certain lineages within these phylogenetic frameworks. To address these discrepancies and deepen our understanding of the phylogenetic structure of Orchidaceae, we provide a comprehensive overview and analysis of phylogenetic studies focusing on contentious groups within Orchidaceae since 2015, delving into discussions on the underlying reasons for observed topological conflicts. We also provide a novel phylogenetic framework at the subtribal level. Furthermore, we examine the tempo and mode underlying orchid species diversity from the perspective of historical biogeography, highlighting factors contributing to extensive speciation. Ultimately, we delineate avenues for future research aimed at enhancing our understanding of Orchidaceae phylogeny and diversity.

5.
Food Chem ; 463(Pt 1): 141140, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39243626

RESUMO

This study evaluated the inhibitory impacts of phytic acid on the growth of T. roseum both in vitro and in apple fruit, as well as elucidated the potential mechanisms underlying its action. Results showed that phytic acid suppressed the lesion diameter caused by T. roseum inoculation in apples, as well as spore germination and mycelial growth of T. roseum in vitro. Phytic acid reduced intracellular conductivity and soluble sugar content, while increasing malondialdehyde and soluble protein contents. Phytic acid treatment inhibited the activities of pectin lyase, pectin methyl polygalacturonase, ß-glucosidase, cellulase, xylanase, pectin methyl trans-eliminase, polygalacturonase, and polygalacturonase both in vitro and in apples. In contrast, inoculation of control and phytic acid-treated fruit with T. roseum resulted in increased enzyme activity. These findings suggest that phytic acid decrease the occurrence of heart rot in apples through inducing disruption of the cell membrane of T. roseum and mediating cell wall metabolism.

6.
Artigo em Inglês | MEDLINE | ID: mdl-39246142

RESUMO

Cell migration is a fundamental and functional cellular process, influenced by complex microenvironment consisting of different cells and extracellular matrix (ECM). Recent research has highlighted that, besides biochemical cues from the microenvironment, physical cues can also greatly alter cellular behavior. However, due to the complexity of the microenvironment, little is known about how the physical interactions between migrating cells and surrounding microenvironment instruct cell movement. Here, we explore various examples of 3D microenvironment reconstruction models in vitro and describe how the physical interplay between migrating cells and the neighboring microenvironment controls cell behavior. Understanding this mechanical cooperation will provide key insights into organ development, regeneration, and tumor metastasis.

7.
Bioorg Chem ; 153: 107764, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39232344

RESUMO

Chemotherapy drug efflux, toxic side effects, and low efficacy against drug-resistant cells have plagued safe and efficient cancer theranostics. However, the materials or methods that resolve these defects all-in-one are scarce. Here, a new cancer theranostics strategy is proposed by utilizing changes in lysosomal acidity in cancer cells to activate the membranolytic model to overcome these obstacles together. Therefore, a simple fluorescent anthracene derivative Lyso-Mito is developed, which has a perfect pKa (4.62) value that falls between the pH of lysosomes in cancer and normal cells. Lyso-Mito itself can precisely target and convert the pH perturbation of lysosomes in cancer cells to fluorescent response and membranolytic module activity to accomplish the low drug efflux, weak toxic side effects, and low drug-resistant cancer diagnosis and treatment without linking other functional units or any additional assistance. Hereby, a new cancer theranostics strategy of integrating organelle microenvironment and the membranolytic model is realized.

8.
J Contam Hydrol ; 267: 104426, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39270601

RESUMO

At present, as the problem of water shortage and pollution is growing serious, it is particularly important to understand the recycling and treatment of wastewater. Artificial intelligence (AI) technology is characterized by reliable mapping of nonlinear behaviors between input and output of experimental data, and thus single/integrated AI model algorithms for predicting different pollutants or water quality parameters have become a popular method for simulating the process of wastewater treatment. Many AI models have successfully predicted the removal effects of pollutants in different wastewater treatment processes. Therefore, this paper reviews the applications of artificial intelligence technologies such as artificial neural networks (ANN), adaptive network-based fuzzy inference system (ANFIS) and support vector machine (SVM). Meanwhile, this review mainly introduces the effectiveness and limitations of artificial intelligence technology in predicting different pollutants (dyes, heavy metal ions, antibiotics, etc.) and different water quality parameters such as biochemical oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) in wastewater treatment process, involving single AI model and integrated AI model. Finally, the problems that need further research together with challenges ahead in the application of artificial intelligence models in the field of environment are discussed and presented.

10.
Poult Sci ; 103(10): 104097, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39094502

RESUMO

Myocyte enhancer factor 2A (MEF2A) is a transcription factor that plays a critical role in cell proliferation, differentiation and apoptosis. In contrast to the wide characterization of its regulation mechanism in mammalian skeletal muscle, its role in chickens is limited. Especially, its wide target genes remain to be identified. Therefore, we utilized Cleavage Under Targets and Tagmentation (CUT&Tag) technology to reveal the genome-wide binding profile of MEF2A in chicken primary myoblasts thus gaining insights into its potential role in muscle development. Our results revealed that MEF2A binding sites were primarily distributed in intergenic and intronic regions. Within the promoter region, although only 8.87% of MEF2A binding sites were found, these binding sites were concentrated around the transcription start site (TSS). Following peak annotation, a total of 1903 genes were identified as potential targets of MEF2A. Gene Ontology (GO) enrichment analysis further revealed that MEF2A target genes may be involved in the regulation of embryonic development in multiple organ systems, including muscle development, gland development, and visual system development. Moreover, a comparison of the MEF2A target genes identified in chicken primary myoblasts with those in mouse C2C12 cells revealed 388 target genes are conserved across species, 1515 target genes are chicken specific. Among these conserved genes, ankyrin repeat and SOCS box containing 5 (ASB5), transmembrane protein 182 (TMEM182), myomesin 2 (MYOM2), leucyl and cystinyl aminopeptidase (LNPEP), actinin alpha 2 (ACTN2), sorbin and SH3 domain containing 1 (SORBS1), ankyrin 3 (ANK3), sarcoglycan delta (SGCD), and ORAI calcium release-activated calcium modulator 1 (ORAI1) exhibited consistent expression patterns with MEF2A during embryonic muscle development. Finally, TMEM182, as an important negative regulator of muscle development, has been validated to be regulated by MEF2A by dual-luciferase and quantitative real-time PCR (qPCR) assays. In summary, our study for the first time provides a wide landscape of MEF2A target genes in chicken primary myoblasts, which supports the active role of MEF2A in chicken muscle development.


Assuntos
Galinhas , Fatores de Transcrição MEF2 , Mioblastos , Animais , Fatores de Transcrição MEF2/metabolismo , Fatores de Transcrição MEF2/genética , Galinhas/genética , Galinhas/metabolismo , Mioblastos/metabolismo , Sítios de Ligação , Proteínas Aviárias/metabolismo , Proteínas Aviárias/genética , Mapeamento Cromossômico
11.
Ann Anat ; 256: 152323, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39209048

RESUMO

Fibroblast growth factors (FGFs) are required for the specification and formation of the epibranchial placodes, which give rise to the distal part of the cranial sensory ganglia. However, it remains unclear whether FGFs play a role in regulating the neurite outgrowth of the epibranchial placode-derived ganglia during further development. Previous studies have shown that Fibroblast growth factor 8 (FGF8) promotes neurite outgrowth from the statoacoustic ganglion in vitro. However, these studies did not distinguish between the neural crest- and placode-derived components of the sensory ganglia. In this study, we focused on the petrosal and nodose ganglia as representatives of the epibranchial ganglia and investigated their axonal outgrowth under the influence of FGF8 signaling protein in vitro. To precisely isolate the placode-derived ganglion part, we labeled the placode and its derivatives with enhanced green fluorescent protein (EGFP) through electroporation. The isolated ganglia were then collected for qRT-PCR assay and cultured in a collagen gel with and without FGF8 protein. Our findings revealed that both placode-derived petrosal and nodose ganglia expressed FGFR1 and FGFR2. In culture, FGF8 exerted a neural trophic effect on the axon outgrowth of both ganglia. While the expression levels of FGFR1/2 were similar between the two ganglia, the petrosal ganglion exhibited greater sensitivity to FGF8 compared to the nodose ganglion. This indicates that the placode-derived ganglia have differential responsiveness to FGF8 signaling during axonal extension. Thus, FGF8 is not only required for the early development of the epibranchial placode, as shown in previous studies, but also promotes neurite outgrowth of placode-derived ganglia.


Assuntos
Fator 8 de Crescimento de Fibroblasto , Crescimento Neuronal , Animais , Fator 8 de Crescimento de Fibroblasto/metabolismo , Crescimento Neuronal/fisiologia , Gânglio Nodoso/citologia , Gânglio Nodoso/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Camundongos , Neuritos/fisiologia
12.
Fish Shellfish Immunol ; 153: 109844, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39168290

RESUMO

Cystatins play an important role in various physiological and pathological processes of organisms, including regulating protein metabolism, antigen processing, inflammatory response, nutritional disorders, and controlling enzyme activity. However, research on immunity functions of fish cystatin M is limited. In this study, Pampus argenteus cystatin M (Pacystatin M) was identified and analyzed. Its amino acid sequence was highly conserved in teleosts, and included the conserved cystatin cysteine protease inhibitor motifs. Pacystatin M was highly expressed in the gill, spleen, and intestine, whereas the expression levels of liver and kidney were lower. Furthermore, Nocardia seriolae infection up-regulated the expression of Pacystatin M in the kidney, spleen and liver, with particularly significant expression observed in the liver on day 15 post-infection. Functional analysis indicated that the recombinant Pacystatin M showed increasing inhibitory activity against papain within a certain concentration range, suggesting that the inhibition was likely competitive. Additionally, Pacystatin M demonstrated the ability to inhibit bacterial growth and high thermal stability. These results suggested that Pacystatin M might be involved in the immune response to microbial invasion and provided new reference addressing disease issues in the large-scale farming of silver pomfret.


Assuntos
Sequência de Aminoácidos , Cistatinas , Doenças dos Peixes , Proteínas de Peixes , Imunidade Inata , Nocardia , Perciformes , Alinhamento de Sequência , Animais , Doenças dos Peixes/imunologia , Cistatinas/genética , Cistatinas/imunologia , Cistatinas/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Imunidade Inata/genética , Perciformes/imunologia , Perciformes/genética , Nocardia/imunologia , Nocardiose/imunologia , Nocardiose/veterinária , Filogenia , Regulação da Expressão Gênica/imunologia , Perfilação da Expressão Gênica/veterinária
13.
Nature ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143210

RESUMO

Bread wheat (Triticum aestivum) is a globally dominant crop and major source of calories and proteins for the human diet. Compared with its wild ancestors, modern bread wheat shows lower genetic diversity, caused by polyploidisation, domestication and breeding bottlenecks1,2. Wild wheat relatives represent genetic reservoirs, and harbour diversity and beneficial alleles that have not been incorporated into bread wheat. Here we establish and analyse extensive genome resources for Tausch's goatgrass (Aegilops tauschii), the donor of the bread wheat D genome. Our analysis of 46 Ae. tauschii genomes enabled us to clone a disease resistance gene and perform haplotype analysis across a complex disease resistance locus, allowing us to discern alleles from paralogous gene copies. We also reveal the complex genetic composition and history of the bread wheat D genome, which involves contributions from genetically and geographically discrete Ae. tauschii subpopulations. Together, our results reveal the complex history of the bread wheat D genome and demonstrate the potential of wild relatives in crop improvement.

14.
Nat Commun ; 15(1): 6512, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095395

RESUMO

Many disease resistance genes have been introgressed into wheat from its wild relatives. However, reduced recombination within the introgressed segments hinders the cloning of the introgressed genes. Here, we have cloned the powdery mildew resistance gene Pm13, which is introgressed into wheat from Aegilops longissima, using a method that combines physical mapping with radiation-induced chromosomal aberrations and transcriptome sequencing analysis of ethyl methanesulfonate (EMS)-induced loss-of-function mutants. Pm13 encodes a kinase fusion protein, designated MLKL-K, with an N-terminal domain of mixed lineage kinase domain-like protein (MLKL_NTD domain) and a C-terminal serine/threonine kinase domain bridged by a brace. The resistance function of Pm13 is validated through transient and stable transgenic complementation assays. Transient over-expression analyses in Nicotiana benthamiana leaves and wheat protoplasts reveal that the fragment Brace-Kinase122-476 of MLKL-K is capable of inducing cell death, which is dependent on a functional kinase domain and the three α-helices in the brace region close to the N-terminus of the kinase domain.


Assuntos
Aegilops , Ascomicetos , Resistência à Doença , Doenças das Plantas , Proteínas de Plantas , Triticum , Triticum/microbiologia , Triticum/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistência à Doença/genética , Aegilops/genética , Aegilops/metabolismo , Plantas Geneticamente Modificadas , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/genética , Nicotiana/genética , Nicotiana/microbiologia , Folhas de Planta/microbiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas
15.
Chem Sci ; 15(31): 12534-12542, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39118620

RESUMO

2'-Fluoro arabino nucleic acid (FANA), classified as a xeno nucleic acid (XNA), stands as a prominent subject of investigation in synthetic genetic polymers. Demonstrating efficacy as antisense oligonucleotides (ASOs) and exhibiting the ability to fold into functional structures akin to enzymes and aptamers, FANA holds substantial promise across diverse biological and therapeutic domains. Owing to structural similarities to DNA, the utilization of naturally occurring DNA polymerases for DNA-mediated FANA replication is well-documented. In this study, we explore alternative nucleic acid processing enzymes typically employed for DNA oligonucleotide (ON) phosphorylation, ligation, and amplification, and assess their compatibility with FANA substrates. Notably, T4 polynucleotide kinase (T4 PNK) efficiently phosphorylated the 5'-hydroxyl group of FANA using ATP as a phosphate donor. Subsequent ligation of the phosphorylated FANA with an upstream FANA ON was achieved with T4 DNA ligase, facilitated by a DNA splint ON that brings the two FANA ONs into proximity. This methodology enabled the reconstruction of RNA-cleaving FANA 12-7 by ligating two FANA fragments amenable to solid-phase synthesis. Furthermore, Tgo DNA polymerase, devoid of 3' to 5' exonuclease activity [Tgo (exo-)], demonstrated proficiency in performing polymerase chain reaction (PCR) with a mixture of dNTPs and FANA NTPs (fNTPs), yielding DNA-FANA chimeras with efficiency and fidelity comparable to traditional DNA PCR. Notably, T7 RNA polymerase (T7 RNAP) exhibited recognition of double-stranded fA-DNA chimeras containing T7 promoter sequences, enabling in vitro transcription of RNA molecules up to 649 nt in length, even in the presence of highly structured F30 motifs at the 3' end. Our findings significantly expand the enzymatic toolkit for FANA manipulation, encompassing phosphorylation, ligation, chimeric amplification, and templating T7 RNAP-catalyzed RNA transcription. These advancements are poised to expedite fundamental research, functional evolution, and translational applications of FANA-based XNA agents. They also have the potential to inspire explorations of a broader range of non-natural nucleic acids that can be routinely studied in laboratories, ultimately expanding the repertoire of nucleic acid-based biomedicine and biotechnology.

16.
Nat Commun ; 15(1): 6751, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117705

RESUMO

Despite the well-established significance of transcription factors (TFs) in pathogenesis, their utilization as pharmacological targets has been limited by the inherent challenges in modulating their protein interactions. The lack of defined small-molecule binding pockets and the nuclear localization of TFs do not favor the use of traditional tools. Aptamers possess large molecular weights, expansive blocking surfaces and efficient cellular internalization, making them compelling tools for modulating TF interactions. Here, we report a structure-guided design strategy called Blocker-SELEX to develop inhibitory aptamers (iAptamers) that selectively block TF interactions. Our approach leads to the discovery of iAptamers that cooperatively disrupt SCAF4/SCAF8-RNAP2 interactions, dysregulating RNAP2-dependent gene expression, which impairs cell proliferation. This approach is further applied to develop iAptamers blocking WDR5-MYC interactions. Overall, our study highlights the potential of iAptamers in disrupting pathogenic TF interactions, implicating their potential utility in studying the biological functions of TF interactions and in nucleic acids drug discovery.


Assuntos
Aptâmeros de Nucleotídeos , Técnica de Seleção de Aptâmeros , Fatores de Transcrição , Aptâmeros de Nucleotídeos/farmacologia , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Humanos , Fatores de Transcrição/metabolismo , Ligação Proteica , Proliferação de Células/efeitos dos fármacos , RNA Polimerase II/metabolismo , Células HEK293 , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores
17.
Chem Commun (Camb) ; 60(69): 9218-9221, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39109611

RESUMO

We present a novel approach to adjust the symmetry of Au octahedral nanocrystals in two-dimensional superlattices. By modifying the content of free polymeric ligands added in the nanocrystal solution, we achieve Au nanocrystal superlattices with tip-on-tip arrangements that significantly enhance the surface-enhanced Raman spectroscopy performance.

18.
BMC Complement Med Ther ; 24(1): 315, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39179999

RESUMO

BACKGROUND: Metabolic syndrome (MetS) is a precursor to the development of many diseases (atherosclerosis, diabetes, etc.). It is marked by disruptions in glucose and lipid metabolism, along with hypertension. Numerous types of risk factors contribute to the development of the MetS, inflammation and insulin resistance are present throughout the metabolic abnormalities. Chrysanthemum indicum L. is a traditional Chinese plant used for both tea and medicine, known for its high content of total flavonoids, which are important secondary metabolites. Our research led to the extraction of a Buddleoside-Rich Chrysanthemum indicum L. extract (BUDE) which has demonstrated anti-inflammatory properties. Nonetheless, the specific role and mechanism of BUDE in preventing MetS remain unclear. METHODS: The study initially evaluated the role of BUDE in preventing MetS. Subsequently, it investigated the anti-inflammatory properties of BUDE in the liver and pancreas in response to unhealthy diets. It then examined the level of insulin resistance and pancreatic ß-cell function induced by inflammation. Additionally, an lipopolysaccharide (LPS)-induced macrophage inflammation model was used to further investigate the ameliorative effects of BUDE in inflammation. RESULTS: BUDE has hypotensive, hypoglycemic and hypolipidemic effects. It can also resolve the imbalance between macrophage subpopulations, impede the triggering of the NF-κB signaling pathway, reduce the secretion of inflammatory mediators, ameliorate insulin resistance, and safeguard organs such as the liver and pancreas from inflammatory damage. These effects collectively contribute to preventing the development of MetS. DISCUSSION: BUDE has the ability to modulate macrophage-mediated inflammation, leading to improved insulin resistance. Additionally, it delivers antihypertensive, hypoglycemic, and hypolipidemic effects, offering a potential for preventing MetS.


Assuntos
Chrysanthemum , Inflamação , Macrófagos , Síndrome Metabólica , Extratos Vegetais , Chrysanthemum/química , Síndrome Metabólica/tratamento farmacológico , Animais , Inflamação/tratamento farmacológico , Camundongos , Masculino , Extratos Vegetais/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Resistência à Insulina , Anti-Inflamatórios/farmacologia , Camundongos Endogâmicos C57BL , Ratos , Modelos Animais de Doenças
19.
Bioorg Chem ; 152: 107744, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39213799

RESUMO

Substrate access tunnel engineering is a useful strategy for enzyme modification. In this study, we improved the catalytic performance of Fe-type Nitrile hydratase (Fe-type NHase) from Pseudomonas fluorescens ZJUT001 (PfNHase) by mutating residue Q86 at the entrance of the substrate access tunnel. The catalytic activity of the mutant PfNHase-αQ86W towards benzonitrile, 2-cyanopyridine, 3-cyanopyridine, and 4-hydroxybenzonitrile was enhanced by 9.35-, 3.30-, 6.55-, and 2.71-fold, respectively, compared to that of the wild-type PfNHase (PfNHase-WT). In addition, the mutant PfNHase-αQ86W showed a catalytic efficiency (kcat/Km) towards benzonitrile 17.32-fold higher than the PfNHase-WT. Interestingly, the substrate preference of PfNHase-αQ86W shifted from aliphatic nitriles to aromatic nitrile substrates. Our analysis delved into the structural changes that led to this altered substrate preference, highlighting an expanded entrance tunnel region, theenlarged substrate-binding pocket, and the increased hydrophobic interactions between the substrate and enzyme. Molecular dynamic simulations and dynamic cross-correlation Matrix (DCCM) further supported these findings, providing a comprehensive explanation for the enhanced catalytic activity towards aromatic nitrile substrates.


Assuntos
Hidroliases , Nitrilas , Pseudomonas fluorescens , Pseudomonas fluorescens/enzimologia , Hidroliases/metabolismo , Hidroliases/química , Especificidade por Substrato , Nitrilas/química , Nitrilas/metabolismo , Estrutura Molecular , Biocatálise , Engenharia de Proteínas
20.
Poult Sci ; 103(9): 104021, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39002367

RESUMO

The laying hen is the spontaneous model of ovarian tumor. A comprehensive comparison based on RNA-seq from hens and women may shed light on the molecular mechanisms of ovarian cancer. We performed next-generation sequencing of microRNA and mRNA expression profiles in 9 chicken ovarian cancers and 4 normal ovaries, which has been deposited in GSE246604. Together with 6 public datasets (GSE21706, GSE40376, GSE18520, GSE27651, GSE66957, TCGA-OV), we conducted a comparative transcriptomics study between chicken and human. In the present study, miR-451, miR-2188-5p, and miR-10b-5p were differentially expressed in normal ovaries, early- and late-stage ovarian cancers. We also disclosed 499 up-regulated genes and 1,061 down-regulated genes in chicken ovarian cancer. The molecular signals from 9 cancer hallmarks, 25 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and 369 Gene Ontology (GO) pathways exhibited abnormalities in ovarian cancer compared to normal ovaries via Gene Set Enrichment Analysis (GSEA). In the comparative analysis across species, we have uncovered the conservation of 5 KEGG and 76 GO pathways between chicken and human including the mismatch repair and ECM receptor interaction pathways. Moreover, a total of 174 genes contributed to the core enrichment for these KEGG and GO pathways were identified. Among these genes, the 22 genes were found to be associated with overall survival in patients with ovarian cancer. In general, we revealed the microRNA profiles of ovarian cancers in hens and updated the mRNA profiles previously derived from microarrays. And we also disclosed the molecular pathways and core genes of ovarian cancer shared between hens and women, which informs model animal studies and gene-targeted drug development.


Assuntos
Galinhas , MicroRNAs , Neoplasias Ovarianas , Transcriptoma , Galinhas/genética , Feminino , Animais , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/veterinária , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Doenças das Aves Domésticas/genética , Perfilação da Expressão Gênica/veterinária , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA