Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36766172

RESUMO

The aim of this study was to investigate whether guanidine acetic acid (GAA) yields a response in rapid-growing lambs depending on forage type. In this study, seventy-two small-tailed Han lambs (initial body weights = 12 ± 1.6 kg) were used in a 120-d feeding experiment after a 7-d adaptation period. A 2 × 3 factorial experimental feeding design was applied to the lambs, which were fed a total mixed ration with two forage types (OH: oaten hay; OHWS: oaten hay plus wheat silage) and three forms of additional GAA (GAA: 0 g/kg; UGAA: Uncoated GAA, 1 g/kg; CGAA: Coated GAA, 1 g/kg). The OH diet had a greater dry matter intake, average daily gain, and hot carcass weight than the OHWS diet. The GAA supplementation increased the final body weight, hot carcass weight, dressing percentage, and ribeye area in the longissimus lumborum. Meanwhile, it decreased backfat thickness and serum triglycerides. Dietary GAA decreased the acidity of the meat and elevated the water-holding capacity in mutton. In addition, the crude protein content in mutton increased with GAA addition. Dietary GAA (UGAA or CGAA) might be an effective additive in lamb fed by different forage types, as it has potential to improve growth performance and meat quality.

2.
Microorganisms ; 10(11)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36422339

RESUMO

In plant cell wall, ferulic acid (FA) and p-coumaric acid (pCA) are commonly linked with arabinoxylans and lignin through ester and ether bonds. These linkages were deemed to hinder the access of rumen microbes to cell wall polysaccharides. The attachment of rumen microbes to plant cell wall was believed to have profound effects on the rate and the extent of forage digestion in rumen. The objective of this study was to evaluate the effect of bound phenolic acid content and their composition in corn silages on the nutrient degradability, and the composition of the attached bacteria. Following an in situ rumen degradation method, eight representative corn silages with different FA and pCA contents were placed into nylon bags and incubated in the rumens of three matured lactating Holstein cows for 0, 6, 12, 24, 36, 48, and 72 h, respectively. Corn silage digestibility was assessed by in situ degradation methods. As a result, the effective degradability of dry matter, neutral detergent fibre, and acid detergent fibre were negatively related to the ether-linked FA and pCA, and their ratio in corn silages, suggesting that not only the content and but also the composition of phenolic acids significantly affected the degradation characteristics of corn silages. After 24 h rumen fermentation, Firmicutes, Actinobacteria, and Bacteroidota were observed as the dominant phyla in the bacterial communities attached to the corn silages. After 72 h rumen fermentation, the rumen degradation of ester-linked FA was much greater than that of ester-linked pCA. The correlation analysis noted that Erysipelotrichaceae_UCG-002, Olsenella, Ruminococcus_gauvreauii_group, Acetitomaculum, and Bifidobacterium were negatively related to the initial ether-linked FA content while Prevotella was positively related to the ether-linked FA content and the ratio of pCA to FA. In summary, the present results suggested that the content of ether-linked phenolic acids in plant cell walls exhibited a more profound effect on the pattern of microbial colonization than the fibre content.

3.
Front Vet Sci ; 9: 954675, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990281

RESUMO

Guanidine acetic acid (GAA) is increasingly considered as a nutritional growth promoter in monogastric animals. Whether or not such response would exist in rapid-growing lambs is unclear yet. The objective of this study was to investigate whether dietary supplementation with uncoated GAA (UGAA) and coated GAA (CGAA) could alter growth performance, nutrient digestion, serum metabolites, and antioxidant capacity in lambs. Seventy-two small-tailed Han lambs initially weighed 12 ± 1.6 kg were randomly allocated into six groups in a 2 × 3 factorial experimental design including two forage-type rations [Oaten hay (OH) vs. its combination with wheat silage (OHWS)] and three GAA treatment per ration: no GAA, 1 g UGAA, and 1 g CGAA per kg dry matter. The whole experiment was completed in two consecutive growing stages (stage 1, 13-30 kg; stage 2, 30-50 kg). Under high-concentrate feeding pattern (Stage 1, 25: 75; Stage 2, 20: 80), UGAA or CGAA supplementation in young lambs presented greater dry matter intake (DMI) in stage 1 and average daily gain (ADG) in the whole experimental period; lambs in OH group had higher ADG and DMI than that in OHWS group in stage 1 and whole experimental period, but this phenomenon was not observed in stage 2. Both UCGA and CGAA addition increased dietary DM, organic matter (OM), neutral detergent fiber (NDF), and acid detergent fiber (ADF) digestion in both stages. In blood metabolism, UCGA and CGAA addition resulted in a greater total protein (TP) and insulin-like growth factor 1(IGF-1) levels, as well as antioxidant capacity; at the same time, UCGA and CGAA addition increased GAA metabolism-creatine kinase and decreased guanidinoacetate N-methyltransferase (GAMT) and L-Arginine glycine amidine transferase catalyzes (AGAT) activity. In a brief, the results obtained in the present study suggested that GAA (UGAA and CGAA; 1 g/kg DM) could be applied to improve growth performance in younger (13-30 kg) instead of older (30-50 kg) lambs in high-concentrate feedlotting practice.

4.
Microorganisms ; 10(6)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35744623

RESUMO

Cysteamine (CS) is an essential nutritional regulator that improves the productive performance of animals by regulating somatotropic hormone secretion. To investigate the fattening potential and effects of CS on rumen microbial fermentation, 48 feedlot lambs were randomly assigned to four groups and fed diets supplemented with different CS concentrations (0, 20, 40, and 60 mg/kg BW). An increase in dietary CS concentrations linearly increased the average daily gain (ADG) and dry matter intake (p < 0.05) but decreased the feed-to-gain ratio (p < 0.01). For the serum hormone, increasing the dietary CS concentration linearly decreased somatostatin and leptin concentration (p < 0.01) but linearly increased the concentration of growth hormone and insulin-like growth factor 1 (p < 0.01). Regarding rumen fermentation, ruminal pH, ammonia-N, and butyrate content did not differ among the four treatments, although dietary CS supplementation linearly increased microbial protein and propionate and decreased the amount of acetate (p < 0.05). Furthermore, an increase in dietary CS concentrations quadratically decreased the estimated methane production and methane production per kg ADG (p < 0.05). High-throughput sequencing revealed that increased dietary CS concentrations quadratically increased Prevotella (p < 0.05), and Prevotella and norank_f__norank_o__Clostridia_UCG-014 were positively correlated with growth performance and rumen fermentation in a Spearman correlation analysis (r > 0.55, p < 0.05). Overall, a CS concentration higher than 20 mg/kg BW produced growth-promoting effects by inhibiting somatostatin concentrations and shifting the rumen toward glucogenic propionate fermentation by enriching Prevotella. In addition, Prevotella and norank_f__norank_o__Clostridia_UCG-014 were positively correlated with growth performance in lambs.

5.
Anim Nutr ; 9: 335-344, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35600541

RESUMO

Ferulic acid (FA) is one of the most abundant hydroxycinnamic acids in the plant world, especially in the cell wall of grain bran, in comparison with forage and crop residues. Previous studies noted that FA was mainly linked with arabinoxylans and lignin in plant cell walls in ester and ether covalent forms. After forages were ingested by ruminant animals or encountered rumen microbial fermentation in vitro, these cross-linkages form physical and chemical barriers to protect cell-wall carbohydrates from microbial attack and enzymatic hydrolysis. Additionally, increasing studies noted that FA presented some toxic effect on microbial growth in the rumen. In recent decades, many studies have addressed the relationships of ester and/or ether-linked FA with rumen nutrient digestibility, and there is still some controversy whether these linkages could be used as a predicator of forage digestibility in ruminants. The authors in this review summarized the possible relationships between ester and/or ether-linked FA and fiber digestion in ruminants. Rumen microbes, especially bacteria and fungi, were found capable of breaking down the ester linkages within plant cell walls by secreting feruloyl and p-coumaroyl esterase, resulting in the release of free FA and improvement of cell wall digestibility. The increasing evidence noted that these esterases secreted by rumen microbes presented synergistic effects with xylanase and cellulase to effectively hydrolyze forage cell walls. Some released FA were absorbed through the rumen wall directly and entered into blood circulation and presented antioxidant effects on host animals. The others were partially catabolized into volatile fatty acids by rumen microbes, and the possible catabolic pathways discussed. To better understand plant cell wall degradation in the rumen, the metabolic fate of FA along with lignin decomposition mechanisms are needed to be explored via future microbial isolation and incubation studies with aims to maximize dietary fiber intake and enhance fiber digestion in ruminant animals.

6.
Microorganisms ; 9(11)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34835326

RESUMO

Cottonseed meal (CSM) is an important protein feed source for dairy cows. Its inclusion in ruminant diets is limited due to the presence of the highly toxic gossypol though rumen microorganisms are believed to be capable of gossypol degrading and transforming. The objective of the present study was to isolate the gossypol-degrading bacteria from the rumen contents and to assess its potential for gossypol degradation in vitro. A strain named Lactobacillus agilis WWK129 was anaerobically isolated from dairy cows after mixed rumen microorganisms were grown on a substrate with gossypol as the sole carbon source. Furthermore, the strain was applied at 5% inoculum concentration in vitro to continuously ferment CSM at 39 °C for five days, and it presented gossypol degradability as high as 83%. Meanwhile, the CSM contents of crude protein, essential amino acids increased significantly along with the increase of lactic acid yield (p < 0.01). Compared with the original CSM, the fermented CSM contents of neutral detergent fiber and acid detergent fiber was remarkably decreased after the anaerobic fermentation (p < 0.01). In brief, the Lactobacillus strain isolated from the rumen is not only of great importance for gossypol biodegradation of CSM, but it could also be used to further explore the role of rumen microorganisms in gossypol degradation by the ruminants.

7.
Anim Nutr ; 7(4): 967-972, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34703914

RESUMO

Gossypol, a phenolic compound found in the cotton plant, is widely distributed in cottonseed by-products. Although ruminant animals are believed to be more tolerant of gossypol toxicity than monogastric animals due to rumen microbial fermentation, the actual mechanisms of detoxification remain unclear. In contrast, the metabolic detoxification of gossypol by Helicoverpa armigera (Lepidoptera: Noctuidae) larvae has achieved great advances. The present review discusses the clinical signs of gossypol in ruminant animals, as well as summarizing advances in the study of gossypol detoxification in the rumen. It also examines the regulatory roles of several key enzymes in gossypol detoxification and transformation known in H. armigera. With the rapid development of modern molecular biotechnology and -omics technology strategies, evidence increasingly indicates that research into the biological degradation of gossypol in H. armigera larvae and some microbes, in terms of these key enzymes, could provide scientific insights that would underpin future work on microbial gossypol detoxification in the rumen, with the ultimate aim of further alleviating gossypol toxicity in ruminant animals.

8.
AMB Express ; 11(1): 91, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34156579

RESUMO

Regarding whole cottonseed (WCS), cottonseed meal (CSM), and cottonseed hull (CSH), in situ rumen incubation was applied to determine their nutrient and gossypol degradation characteristics and bacterial colonization profile in lactating Holstein cows. Nylon bags containing the cotton by-products were incubated for 0, 6, 12, 24, 36, 48 and 72 h in the rumen, respectively. The relationship between nutrient degradability and free gossypol (FG) content were examined, and the differences in the composition and inferred gene function of the colonized microbiota were studied. As a result, CSM presented highest effective degradability of dry matter, neutral detergent fibre and acid detergent fibre, but the highest effective degradability of crude protein was found in WCS. Free gossypol disappearance rate increased significantly in the first 6 h, and it reached approximately 94% at 72 h of incubation among all samples. The level of FG did not affect nutrient degradability of cotton by-products. Significant differences were noted in attached bacterial community structure among cotton by-products after 24 h rumen incubation. Among the most abundant taxa at genus level, a greater abundance of Cercis gigantea and Succiniclasticum was observed in WCS samples, whereas the CSH and CSM samples contained a greater proportion of Prevotella 1 and Rikenellaceae RC9 gut group. The redundancy analysis revealed that the level of neutral detergent fibre, ether extract, and FG in cotton by-products were significantly positive related with the composition of the attached bacteria. Collectively, our results revealed the dynamics of degradation characteristics, and the difference in the composition of bacterial colonization. These findings are of importance for the targeted improvement of cotton by-products nutrient use efficiency in ruminants and further understanding of the gossypol degradation mechanism in the rumen.

9.
Toxics ; 9(3)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800444

RESUMO

Gossypol is a key anti-nutritional factor which limits the feeding application of cottonseed by-products in animal production. A 2 × 4 factorial in vitro experiment was conducted to determine the effect of gossypol addition levels of 0, 0.25, 0.5, and 0.75 mg/g on ruminal fermentation of a high-forage feed (HF, Chinese wildrye hay/corn meal = 3:2) in comparison with a low-forage feed (LF, Chinese wildrye hay/corn meal = 2:3). After 48 h of incubation, in vitro dry matter disappearance was greater in the LF than the HF group, while the cumulative gas production and asymptotic gas production were greater in the HF than the LF group (p < 0.05). Regardless of whatever ration type was incubated, the increasing gossypol addition did not alter in vitro dry matter disappearance. The asymptotic gas production, cumulative gas production, molar percentage of CO2 and H2 in fermentation gases, and microbial protein in cultural fluids decreased with the increase in the gossypol addition. Conversely, the gossypol addition increased the molar percentage of CH4, ammonia N, and total volatile fatty acid production. More than 95% of the gossypol addition disappeared after 48 h of in vitro incubation. Regardless of whatever ration type was incubated, the real-time PCR analysis showed that the gossypol addition decreased the populations of Fibrobactersuccinogenes, Ruminococcus albus, Butyrivibrio fibrisolvens, Prevotella ruminicola, Selenomonas ruminantium, and fungi but increased Ruminococcus flavefaciens, protozoa, and total bacteria in culture fluids in comparison with the control (p < 0.01). Additionally, the tendency of a smaller population was observed for R. albus, B. fibrisolvens, and fungi with greater inclusion of gossypol, but a greater population was observed for F. succinogenes, R. flavefaciens, S. ruminantium, protozoa, and total bacteria. In summary, the present results suggest that rumen microorganisms indeed presented a high ability to degrade gossypol, but there was an obvious detrimental effect of the gossypol addition on rumen fermentation by decreasing microbial activity when the gossypol inclusion exceeded 0.5 mg/g, and such inhibitory effect was more pronounced in the low-forage than the high-forage group.

10.
Animals (Basel) ; 11(2)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525565

RESUMO

This study was conducted to evaluate the dietary supplemental effects of 2-nitroethanol (NEOH) in comparison with monensin on methane (CH4) emission, growth performance and carcass characteristics in female lambs. Sixty female, small-tailed Chinese Han lambs (3.5 ± 0.3 month) were randomly allotted into three dietary treatment groups: (1) Control group, a basal control diet, (2) monensin group, the basal diet added with 40 mg/kg monensin, (3) NEOH group, the basal diet added with 277 mg/kg nitroethanol, and the feedlotting trial lasted for 70 days. Although dietary addition of monensin and NEOH did not affect nutrient digestibility of lambs, both monensin and NEOH decreased the calculated CH4 production (12.7% vs. 17.4% decrease; p < 0.01). In addition, the CH4 production represents less dietary energy loss in the monensin and NEOH group than in the control, indicating that monensin and NEOH are potent CH4 inhibitors that can reduce dietary energy loss. Dietary addition of monensin and NEOH decreased dry matter intake (p < 0.01); however, they increased the ADG of female lambs (p < 0.01). As a result, both monensin and NEOH increased feed conversion efficiency of the feedlotting lambs (p < 0.01), suggesting that feed energy saved from CH4 production promoted the feed efficiency and ADG in the present study. Except for the fact that NEOH addition increased the net muscle percentage to carcass weight (p = 0.03), neither monensin nor NEOH had a significant influence on carcass characteristics of female lambs (p > 0.05). From an economic point of view, NEOH and monensin caused a reduction in feed consumption costs, therefore resulting in a higher net revenue and economic efficiency than the control. In summary, dietary supplementation of NEOH in comparison with monensin presented a more promoting effect on energy utilization in female lambs by inhibiting rumen methanogenesis more efficiently, and NEOH improved the net revenue and economic efficiency more significantly than monensin.

11.
Metabolites ; 10(1)2019 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-31881649

RESUMO

A class of aliphatic short chain nitrocompounds have been reported as being capable of CH4 reduction both in vitro and in vivo. However, the laboratory evidence associated with the metabolic fate of nitrocompounds in the rumen has not been well documented. The present study was conducted to compare in vitro degradation and metabolism of nitroethane (NE), 2-nitroethanol (NEOH), and 2-nitro-1-propanol (NPOH) incubated with mixed rumen microorganisms of dairy cows. After 10 mM supplementation of nitrocompounds, a serious of batch cultures were carried out for 120 h under the presence of two substrates differing in the ratio of maize meal to alfalfa hay (HF, 1:4; LF, 4:1). Compared to the control, methane production was reduced by 59% in NPOH and by >97% in both NE and NEOH, and such antimethanogenic effects were more pronounced in the LF than the HF group. Although NE, NEOH, and NPOH addition did not alter total VFA production, the rumen fermentation pattern shifted toward increasing propionate and butyrate and decreasing acetate production. The kinetic disappearance of each nitrocompound was well fitted to the one-compartment model, and the disappearance rate (k, %/h) of NE was 2.6 to 5.2 times greater than those of NEOH and NPOH. Higher intermediates of nitrite occurred in NEOH in comparison with NPOH and NE while ammonia N production was lowest in NEOH. Consequently, a stepwise accumulation of bacterial crude protein (BCP) in response to the nitrocompound addition was observed in both the HF and LF group. In brief, both NE and NEOH in comparison with NPOH presented greater antimethanogenic activity via the shift of rumen fermentation. In addition, the present study provided the first direct evidence that rumen microbes were able to cleave these nitrocompounds into nitrite, and the subsequent metabolism of nitrite into ammonia N may enhance the growth of rumen microbes or promote microbial activities.

12.
Animals (Basel) ; 9(10)2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614547

RESUMO

This study was conducted to determine the dietary supplemental effects of nitroethanol (NEOH) in comparison with monensin on growth performance and estimated methane (CH4) production in feedlotting lambs. Sixty male, small-tailed Chinese Han lambs were arranged at random into three dietary treatment groups: (1) a basal control diet (CTR), (2) the basal diet added with 40 mg/kg monensin (MON), (3) the basal diet added with 277 mg/kg nitroethanol (NEOH). During the 32-day lamb feeding, monensin and nitroethanol were added in period 1 (day 0-16) and then withdrawn in the subsequent period 2 (day 17-32) to determine their withdrawal effects. The average daily gain (ADG) and feed conversion rate in the whole period ranked: NEOH > MON > CTR (p < 0.01), suggesting that the dietary addition of NEOH in comparison with monensin presented a more lasting beneficial effect on feed efficiency. Methane emission was estimated with rumen VFA production and gross energy intake. Both monensin and NEOH addition in comparison with the control remarkably decreased CH4 emission estimate (24.0% vs. 26.4% decrease; p < 0.01) as well as CH4 emission per kg ADG (8.7% vs. 14.0% decrease; p < 0.01), but the NEOH group presented obvious lasting methanogenesis inhibition when they were withdrawn in period 2. Moreover, the in vitro methanogenic activity of rumen fluids was also decreased with monensin or NEOH addition (12.7% vs. 30.5% decrease; p < 0.01). In summary, the dietary addition of NEOH in comparison with monensin presented a greater promoting effect on growth performance in feedlotting lambs by inhibiting rumen methanogenesis more efficiently and persistently.

13.
Ticks Tick Borne Dis ; 7(5): 715-719, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26976703

RESUMO

In order to investigate the diversity of spotted fever group (SFG) Rickettsia infection in hard ticks, ticks were harvested from the forest areas in Suifenhe city, along the Chinese-Russian border and conventional PCR was carried out using universal SFG Rickettsia primers targeting gltA and ompA genes to screen for their infection with SFG Rickettsia organisms. Results showed that of the 215 ticks belonging to Ixodes persulcatus, Haemaphysalis concinna and Haemaphysalis japonica Warburton, 1908 species, 138 (64.2%) were positive for SFG Rickettsia. Three species of SFG Rickettsia were detected, Rickettsia raoultii, Rickettsia heilongjiangensis and Candidatus Rickettsia tarasevichiae. No co-infection with different species of SFG Rickettsia was found in any individual tick among the three tick species. We detected more than one SFG Rickettsia species in ticks from each of the three tick species with an overlapping distribution and potentially similar transmission cycles of SFG Rickettsia in the areas surveyed. Consequently, different pathogenic rickettsial species may be involved in human cases of rickettsiosis after a bite of the three above-mentioned tick species in that area Rickettsia.


Assuntos
Variação Genética , Ixodidae/microbiologia , Infecções por Rickettsia/veterinária , Rickettsia/classificação , Rickettsia/isolamento & purificação , Animais , China , Florestas , Ixodidae/classificação , Reação em Cadeia da Polimerase , Rickettsia/genética , Infecções por Rickettsia/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...